
Accelerometer Tutorial (ADXL-345) GetFit

This document guides the user through the following:

1. Wiring and set up depending on communication protocol use
2. Verification that the accelerometer is working as intended
3. Using the accelerometer as a pedometer for step counting

Table of Contents
1 - Introduction 2

2 - Set Up 3
2.1 Wiring for SPI 4
2.2 Wiring for I2C 5

3 - Reading Data and Verification 6

4 - Using the Accelerometer as a Pedometer 7

Troubleshooting Guide 8

Useful References 9

1

1 - Introduction

An accelerometer is a tool used to measure acceleration. It can be used in many applications,
including step counting, seismic activity, and to measure inclination or speed. Keep in mind,
when you’re measuring raw data from the accelerometer while it’s still, you would expect all
readings to be 0, but it will always measure the acceleration due to gravity (9.81 m2/s) and it
may give you values in the other axes due to tilting if the accelerometer is not perfectly flat.

The component we used, the ADXL345, can be purchased online or through Lee’s Electronics
in Vancouver. It is capable of two forms of communication: SPI and I2C. What’s the difference?

SPI is a FULL duplex system - the device can send AND receive data simultaneously
I2C is a HALF duplex system - the device can send OR receive data

The data sheet: ADXL345 Data Sheet
And Pin-out:

(Found in Pin Configuration section of Data Sheet)

2

https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf

2 - Set Up

You will need:
● The ADXL345
● (at least) 4 male-to-male wires - Ground, VCC, CLK, and SDA or DO
● (optional) 470 ohm resistors

When you receive the ADXL345 component, you will need to solder the pins yourself. Ensure
that the board is on top of the short end of the pins before you solder, since it’ll be difficult to
desolder and fix that mistake.

It should look like this if you’ve done it correctly:

3

2.1 Wiring for SPI

***Black - necessary (SPIO_DO for Output Only)
Orange - alternative (because SPIO_D1 can be an Input/Output Pin)

RED - VCC
BLACK - GRD
PURPLE - I2C SDA
WHITE - I2C CLK
**CS (chip select) may need to be tied to VCC

4

2.2 Wiring for I2C
For reference, our group used I2C for the project, our code will be using the protocol as well.

***Black - necessary
Orange and Pink - you can use either of them, just be sure that you use the correct I2C bus in your
code (more information later in this guide) and don’t mix them up-

● use P9_17 and P9_18 together (orange, BUS1) OR
● P9_19 and P9_20 together (pink, BUS2)

RED - VCC
BLACK - GRD
SMALL GREEN - CS (chip select) tied to VCC
ORANGE M2M - I2C SDA
GREEN M2M - I2C CLK

5

3 - Reading Data and Verification

The accelerometer can collect data for three different axes (X,Y,Z) and send that data through
the SDA pin. These are the following registers needs to collect raw data from the accelerometer:

(Found in Register Map section of Data Sheet)
To read and write data to and from the accelerometer, you can use the code to read/write from a
register from Dr.Brian’s I2CGuide: I2C Guide

Each axis is split into data0 and data1, which will need to be formatted to create one value for
each axis. The following code can be used to format the data0 and data1 value into one:

double formatRawData(int data0, int data1)
{

static double maxResolution = 256.00;
data1 = data1 << 8;
int dataOut = data0 + data1;

double data = (double) dataOut / maxResolution;
return data;

}
The one variable that you can change from this, maxResolution, will depend on your
specifications. The accelerometer has user-selectable resolution with corresponding g Ranges.
The default resolution for the accelerometer is 2g, therefore, the raw data is divided by 256 to
reflect its proper value.

(Found in Specifications section of Data Sheet)

6

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/ensc351/guides/files/I2CGuide.pdf

BEFORE TRYING TO READ ANY DATA, ensure that you have done all of the following:

1. You have installed the i2c tools on your beaglebone
a. debian@beaglebone:/$ sudo apt install i2c-tools

2. You have checked that the device is attached to the correct bus [53 should appear for

bus 1], if you get all X’s or all - -, double check your pinout assignment

a. debian@beaglebone:/$ i2cdetect -y -r 1

3. You have enabled the pins you’re using

a. For bus 1:
config-pin -q P9_17
config-pin -q P9_18

4. You have taken the device out of power-saving mode (by writing 0x08 to the POWER_CTL
register, 0x2d) either by:

a. Writing it directly in terminal
debian@beaglebone:/$ i2cset -y 1 0x53 0x2d 0x08

b. Writing to it in your program upon initialization
int i2cFileDesc = initI2cBus(I2CDRV_LINUX_BUS1, I2C_ACCEL_ADDRESS);
// all on one line
writeI2cReg(i2cFileDesc, 0x2d,0x08);

5. Tilt the board and use the command to ensure that you’re receiving data (ex. 0x34 is Y0)
a. debian@beaglebone:/$ i2cget -y 1 0x53 0x34

b. See troubleshooting guide below for more information

4 - Using the Accelerometer as a Pedometer

Similarly to the way your phone is able to read and track your steps, so can your beaglebone!
Here is some context/background knowledge to turn your accelerometer into a pedometer.

Keep in mind that it may not be 100% accurate, similarly to the way that you can shake your
phone or watch and the steps may increase. Additional, proper filtering can be done to make
your pedometer as accurate as possible.

To convert the XYZ acceleration vectors into their
corresponding magnitudes, use some linear algebra and
calculate the magnitude with the following formula:

As you walk, your phone or device will bounce with each step, (+/- a certain threshold in the up
and down axis, in the case of the ADXL345, that is the z axis). If you were constantly sampling
data and you lived in a perfect world where the device would stay perfectly still as you walked,
the Z axis magnitude will form a sine wave. A “step” would be each peak of the sine wave. You
can play around with threshold values to ensure that the pedometer is doing what is intended.

7

Troubleshooting Guide

● “It keeps saying ‘failure to read I2C bus’ even though I have it connected”
○ Be sure to enable the pins you’re using before reading

For i2c BUS1:
config-pin -q P9_17
config-pin -q P9_18

For i2c BUS2:
config-pin -q P9_19
config-pin -q P9_20

○ Be sure to make the accelerometer leave it’s power saving mode, if you’re using
BUS1, send this command to write the value 0x08 to the POWER_CTL register
(0x2d): i2cset -y 1 0x53 0x2d 0x08

● “I have set it up properly but when I read raw data, the values don’t change”
○ Be sure to check that you’re using the right I2C bus in your code,

P9_17 and P9_18 correspond to bus 1
#define I2CDRV_LINUX_BUS1 "/dev/i2c-1"
#define I2C_ACCEL_ADDRESS 0x53

P9_17 and P9_18 correspond to bus 2
#define I2CDRV_LINUX_BUS1 "/dev/i2c-2"

○ Be sure to make the accelerometer leave it’s power saving mode, if you’re using
BUS1, send this command to write the value 0x08 to the POWER_CTL register
(0x2d): i2cset -y 1 0x53 0x2d 0x08

○ Check if your pins are shorted. Use a DMM and use one probe on VCC and
GRD, then probe SDA and have the other one on all other pins

● “The values I read aren’t what I expected”
○ It sounds silly, but make sure that the accelerometer is as flat as possible. Any

tilting may result in “unexpected results”
○ Check your soldering; lack of solder or a short may give you weird values
○ Check your data type for reading the value, signed/unsigned/char/int/double may

be affecting what you see
○ Check your resolution and ensure that you’re dividing by the correct value for

your specifications (or the default!)
○ Change the I2C bus and try the other one!

8

Useful References

Accelerometer Resources:
How does an accelerometer work?
https://www.youtube.com/watch?v=i2U49usFo10

ADXL345 Product Information
https://www.analog.com/en/products/adxl345.html#product-overview

I2c set up
https://github.com/nghiaphamsg/BBB-linux-app/blob/master/10_I2C_ADXL345/README.md

Pedometer Resources:
How does a pedometer work? Physics and calculations
https://www.aosabook.org/en/500L/a-pedometer-in-the-real-world.html

Analyzing data for a pedometer
https://www.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beaglebonebl
ue-hardware-example.html

9

https://www.youtube.com/watch?v=i2U49usFo10
https://www.analog.com/en/products/adxl345.html#product-overview
https://github.com/nghiaphamsg/BBB-linux-app/blob/master/10_I2C_ADXL345/README.md
https://www.aosabook.org/en/500L/a-pedometer-in-the-real-world.html
https://www.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beagleboneblue-hardware-example.html
https://www.mathworks.com/help/supportpkg/beagleboneblue/ref/counting-steps-using-beagleboneblue-hardware-example.html

