

VL53L0X

Time of Flight Distance Sensor

on BeagleBone Green

CMPT433

Fall 2019

Written by:
Irene Abrea

Heidi Tong

Joanna Niemczyk

Table of Contents

1. Introduction 3

2. Required Parts 3

3. Connections and Setup 4

4. Checking Distance Reading via Command Line 6

5. Checking Distance Reading via C Code 8

5.1. Initialization 8

5.2. Configuring Distance Sensor to Read Continuously 9

5.3. Reading Distance Sensor Output 9

5.4. Main Program 10

2

1. Introduction

The VL53L0X is a “time of flight” sensor that measures distance by detecting how long light has

taken to bounce back to the sensor. It contains a small invisible laser source and a matching

sensor. The VL53L0X is good for determining distance of only the surface directly in front of it

and can handle about 50mm to 1200mm of range distance. This guide will cover how to use the

VL53L0X on the BeagleBone Green using I2C.

2. Required Parts

The following parts are required to connect the VL53L0X distance sensor to the BeagleBone

Green:

● Breadboard

● VL53L0X Time of Flight Distance Sensor

● 4 male-to-female jumper wires

3

3. Connections and Setup
The BeagleBone Green supports three I2C buses numbered 0 to 2. In this guide, we will be using

using I2C2. To setup the distance sensor, place it on the breadboard and make the following

connections. Note that all the connections are made to the pins on the P9 header on the

BeagleBone Green.

● Connect VIN to P9_3 (3.3V)

● Connect GND to P9_2 (GND)

● Connect the SCL pin to P9_19 (I2C2_SCL)

● Connect the SDA pin to P9_20 (I2C2_SDA)

The default I2C address for the distance sensor is 0x29.

4

5

4. Checking Distance Reading via Command Line
This guide assumes that you have previously followed the steps from Brian Fraser’s I2C Guide,

section 2.1 to enable the I2C buses.

1. Ensure that the I2C2 bus is enabled:

i2cdetect -l
i2c-1 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-0 i2c OMAP I2C adapter I2C adapter

2. Display I2C devices on the I2C2 bus:

i2cdetect -y -r 2

○ Where 2 indicates the second I2C bus, Linux device /dev/i2c-2
○ If the distance sensor is properly wired and enabled, it should be detected on

register 0x29.
○ Sample output:

“--” means no device found.

“##” means device at address ## detected (hex).

“UU” means in use by a driver (cape manager, HDMI, or another kernel device driver).

6

3. To display the internal memory of the distance sensor, run the command:

i2cdump -y 2 0x29

○ The distance sensor reading is stored within 2 bytes of data with the Most

Significant Bit (MSB) stored in register 0x1e and the Least Significant Bit stored in

0x1f (LSB).

○ When the sensor doesn’t detect anything, the MSB and LSB registers can read

0x00 0x14 or 0x1f 0xfe by default. To filter out these values, we will accept

values within a given range while reading the registers.

○ The sensor value can be converted to distance in mm by doing the following

conversion, where MSB and LSB corresponds to the value from the respective

registers:

uint16_t x = (MSB << 8) | (LSB);

4. Troubleshooting

○ When checking if the I2C bus is enabled, if you get the output:

i2cdetect -l
-bash:i2cdetect:command not found

This means the I2C tools are not installed on the target. Follow Section 2.1 from

Brian Fraser’s I2C Guide.

7

5. Checking Distance Reading via C Code
5.1 Initialization
The following function initializes the distance sensor on I2C2. The function

DistanceSensor_configPins() sets the pin configuration on P9 pins 19 and 20 to I2C.

Note that this may not be necessary as these pins may be set to I2C by default.

/* I2C device that the distance sensor is wired to */
#define I2C_LINUX_BUS2 "/dev/i2c-2"
/* Device address of the distance sensor */
#define DISTANCE_SENSOR_DEVICE_ADDRESS 0x29

static void DistanceSensor_configPins() {
 // Execute the shell command (output into pipe)
 FILE *pipe = popen("config-pin P9_19 i2c", "r");
 // Close pipe, check program’s exit code
 int exitCode = WEXITSTATUS(pclose(pipe));
 if (exitCode != 0) {
 printf("Program failed: %d\n", exitCode);
 }

 pipe = popen("config-pin P9_20 i2c", "r");
 exitCode = WEXITSTATUS(pclose(pipe));
 if (exitCode != 0) {
 printf("Program failed: %d\n", exitCode);
 }
}

static int DistanceSensor_init() {
 DistanceSensor_configPins();
 int distanceSensorFD = open(I2C_LINUX_BUS2 , O_RDWR);
 int result = ioctl(distanceSensorFD, I2C_SLAVE,
DISTANCE_SENSOR_DEVICE_ADDRESS);
 if (result < 0) {
 perror("I2C: Unable to set I2C device to slave address.");
 exit(1);
 }

 return distanceSensorFD;
}

8

5.2 Configuring Distance Sensor to Read Continuously
By default the distance sensor is configured to take readings one at a time. Before reading the

sensor values, we need to change the distance sensor’s reading mode to enable continuous

reading. The current reading mode is stored in register 0x00. To allow continuous reading, we

need to write 0x02 to this register. The list of modes and their corresponding hex values can be

found in the Adafruit VL53L0X library source code.

#define VL53L0X_REG_SYSRANGE_START 0x000
#define VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK 0x02

static void DistanceSensor_setContinuous(int distanceSensorFD) {
 unsigned char buff[2];
 buff[0] = VL53L0X_REG_SYSRANGE_START;
 buff[1] = VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK;
 int res = write(distanceSensorFD, buff, 2);
 if (res != 2) {
 perror("I2C: Unable to write i2c register.");
 exit(1);
 }
}

5.3 Reading Distance Sensor Output
The following function gets the sensor reading’s MSB and LSB by reading from registers 0x1e

and 0x1f, converts the value to distance, and returns it.

/* Address of the distance sensor reading's MSB*/
#define DISTANCE_SENSOR_READING_MSB 0x1e
/* Total number of bytes to read,
 in our case we are reading two bytes,
 the MSB and LSB of the distance reading*/
#define NUM_BYTES_READ 2

static uint16_t DistanceSensor_readReg(int distanceSensorFD) {
 char values[NUM_BYTES_READ];

 unsigned char startRegAddr = DISTANCE_SENSOR_READING_MSB;
 for (int i = 0; i < NUM_BYTES_READ; i++) {

9

https://github.com/adafruit/Adafruit_VL53L0X

 unsigned char currAddr = startRegAddr + i;
 int res = write(distanceSensorFD, &(currAddr), sizeof(currAddr));
 if (res != sizeof(currAddr)) {
 perror("I2C: Unable to write to i2c register.");
 exit(1);
 }

 res = read(distanceSensorFD, &values[i], sizeof(*values));
 if (res != sizeof(*values)) {
 perror("I2C: Unable to read from i2c register");
 exit(1);
 }
 }

 // Convert the reading to distance
 uint16_t dist = (((uint16_t)(values[0]) << 8) | (uint16_t)(values[1]));

 return dist;
}

5.4 Main Program

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <stdbool.h>
#include <stdint.h>

// Add the other functions above here...

int main() {
 // Initialize the I2C device
 int distanceSensorFD = DistanceSensor_init();

 // Set device to continuous ranging mode
 DistanceSensor_setContinuous(distanceSensorFD);

10

 while(true) {
 uint16_t dist = DistanceSensor_readReg(distanceSensorFD);

 if (dist > 20 && dist < 8190) {
 printf("Reading: %u mm\n", dist);
 } else {
 printf("Reading: Nothing detected\n");
 }

 // Wait 0.25 sec between each reading
 struct timespec reqDelay = {0, 250000000};
 nanosleep(&reqDelay, (struct timespec *) NULL);
 }

 return 0;
}

11

