VL53LO0X
Time of Flight Distance Sensor
on BeagleBone Green

CMPT433
Fall 2019

Written by:
Irene Abrea
Heidi Tong

Joanna Niemczyk

Table of Contents

Introduction

LA S

Required Parts

Connections and Setup

Checking Distance Reading via Command Line

Checking Distance Reading via C Code

5.1.
5.2.
5.3.
5.4.

Initialization

Configuring Distance Sensor to Read Continuously
Reading Distance Sensor Output

Main Program

O O 0 00 O b W W

[E
o

1. Introduction

The VL53LO0X is a “time of flight” sensor that measures distance by detecting how long light has
taken to bounce back to the sensor. It contains a small invisible laser source and a matching
sensor. The VL53L0X is good for determining distance of only the surface directly in front of it
and can handle about 50mm to 1200mm of range distance. This guide will cover how to use the
VL53LOX on the BeagleBone Green using I12C.

2. Required Parts

The following parts are required to connect the VL53L0X distance sensor to the BeagleBone
Green:

® Breadboard

e VL53LOX Time of Flight Distance Sensor

® 4 male-to-female jumper wires

Figure 1: From top to bottom - breadboard, VL53L0X Distance Sensor, male-to-female jumper wires (x4)

3. Connections and Setup

The BeagleBone Green supports three 12C buses numbered 0 to 2. In this guide, we will be using
using 12C2. To setup the distance sensor, place it on the breadboard and make the following
connections. Note that all the connections are made to the pins on the P9 header on the
BeagleBone Green.

Connect VIN to P9_3 (3.3V)

Connect GND to P9_2 (GND)

Connect the SCL pin to P9_19 (12C2_SCL)
Connect the SDA pin to P9_20 (12C2_SDA)

The default 12C address for the distance sensor is 0x29.

Figure 2: Connections on distance sensor. From left to
right - VIN {red), GND (black), SCL {white), 5DA (gray)

Figure 3: Connections on BBG P9 header.

sas ssEaEs
- w s

T

Figure 4: Overview aof full setup.

4. Checking Distance Reading via Command Line

This guide assumes that you have previously followed the steps from Brian Fraser’s 12C Guide,
section 2.1 to enable the 12C buses.

1. Ensure that the I12C2 bus is enabled:

i2cdetect -1

i2c-1 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-0 i2c OMAP I2C adapter I2C adapter

2. Display I12C devices on the 12C2 bus:
i2cdetect -y -r 2

Where 2 indicates the second 12C bus, Linux device /dev/i2c-2
If the distance sensor is properly wired and enabled, it should be detected on
register 0x29.

o Sample output:

debian@beaglebone: /mnt/remote/myApps$ i2cdetect -y -r 2
@ 1 2 3 45 6 7 8 9 ab cdef

25 20 oo 2o ao oo oz oo (] oo oo oo oo oo aa o=

T L B

fem em em = WU U WU == == -m mm am em e -

o n

means no device found.
“##” means device at address ## detected (hex).
“UU” means in use by a driver (cape manager, HDMI, or another kernel device driver).

3. To display the internal memory of the distance sensor, run the command:
i2cdump -y 2 0x29

debian@beaglebone: /mnt/remote/myAppsS i2cdump
No size specified (using byte-data access)
@ 1 2 3 456 7 8 9 abocdd 0123456789%abcdef

: 02 ff 01 0O 0O OO GO GO OO OO AO OO OO 00
: 00 00 01 40 40 06 bc 00 01 77 00 4c 00 Of
: 00 OO OO OO OO OO OO GO OO e2 OO OO OO 0O
: 13 04 03 03 03 44 00 00 OO0 OO0 OO OO OO 0O
: 82 80 07 17 00 00 2a GO OO OO AO 6O OO 0O
: 07 60 99 0O 0O OO 68 30 OO OO MO OO OO 00
: 00 00 OO OO OO0 OO 40 OO OO0 OO OO OO OO 00
: 05 02 85 0O 0O OO GO GO 21 OO Pa OO OO 0O
: 00 OO OO OO 01 OO 01 OO 24 OO 29 OO OO 0O
: ff df f7 ff ff ff b7 ff fe ff 7f bf 97 ef
: df 6f f7 ff ff ff ff ff f7 be df bf df ff
: ff ff bf ff df Ob b4 GO GO OO AO 6O OO 00
: ee aa 10 00 01 065 00 00 01 18 1f 01 00
: 00 of 00 OO OO 58 00 02 ff ff ff ff ff
: 00 0O 00 00 00 61 00 00 00 0O 0O 0O 26
: 00 00 00 0O 00 00 00 600 26 00 0O 0O 0O

o The distance sensor reading is stored within 2 bytes of data with the Most
Significant Bit (MSB) stored in register Ox1e and the Least Significant Bit stored in
Ox1f (LSB).

o When the sensor doesn’t detect anything, the MSB and LSB registers can read
0x00 0x14 or 0x1f Oxfe by default. To filter out these values, we will accept
values within a given range while reading the registers.

o The sensor value can be converted to distance in mm by doing the following
conversion, where MSB and LSB corresponds to the value from the respective

registers:
uint16_t x = (MSB << 8) | (LSB);

4. Troubleshooting
o When checking if the I12C bus is enabled, if you get the output:

i2cdetect -1
-bash:i2cdetect:command not found

This means the 12C tools are not installed on the target. Follow Section 2.1 from
Brian Fraser’s 12C Guide.

5. Checking Distance Reading via C Code
5.1 Initialization

The following function initializes the distance sensor on 12C2. The function
DistanceSensor_configPins() sets the pin configuration on P9 pins 19 and 20 to I2C.
Note that this may not be necessary as these pins may be set to 12C by default.

/* I2C device that the distance sensor is wired to */

#define I2C_LINUX_BUS2 "/dev/i2c-2"
/* Device address of the distance sensor */
#define DISTANCE_SENSOR_DEVICE_ADDRESS 0x29

static void DistanceSensor_configPins() {
// Execute the shell command (output into pipe)
FILE *pipe = popen("config-pin P9_19 i2c", "r");
// Close pipe, check program’s exit code
int exitCode = WEXITSTATUS(pclose(pipe));
if (exitCode !'= 0) {
printf("Program failed: %d\n", exitCode);

}

pipe = popen("config-pin P9_20 i2c", "r");
exitCode = WEXITSTATUS(pclose(pipe));
if (exitCode !'= 0) {
printf("Program failed: %d\n", exitCode);
}
}

static int DistanceSensor_init() {
DistanceSensor_configPins();
int distanceSensorFD = open(I2C_LINUX_BUS2 , O_RDWR);
int result = ioctl(distanceSensorFD, I2C_SLAVE,
DISTANCE_SENSOR_DEVICE_ADDRESS);
if (result < 9) {
perror("I2C: Unable to set I2C device to slave address.");
exit(1);

}

return distanceSensorFD;

5.2 Configuring Distance Sensor to Read Continuously

By default the distance sensor is configured to take readings one at a time. Before reading the
sensor values, we need to change the distance sensor’s reading mode to enable continuous
reading. The current reading mode is stored in register 0x00. To allow continuous reading, we
need to write 0x02 to this register. The list of modes and their corresponding hex values can be
found in the Adafruit VL53L0X library source code.

#define VL53LOX_REG_SYSRANGE_START 0x000
#define VL53LOX_REG_SYSRANGE_MODE_BACKTOBACK 0x02

static void DistanceSensor_setContinuous(int distanceSensorFD) {
unsigned char buff[2];
buff[o] VL53LOX_REG_SYSRANGE_START;
buff[1] VL53LOX_REG_SYSRANGE_MODE_BACKTOBACK;
int res = write(distanceSensorFD, buff, 2);
if (res = 2) {
perror("I2C: Unable to write i2c register.");
exit(1);

5.3 Reading Distance Sensor Output

The following function gets the sensor reading’s MSB and LSB by reading from registers Ox1le
and 0x1f, converts the value to distance, and returns it.

/* Address of the distance sensor reading's MSB*/
#define DISTANCE_SENSOR_READING_MSB Ox1e
/* Total number of bytes to read,
in our case we are reading two bytes,
the MSB and LSB of the distance readingx/
#define NUM_BYTES_READ 2

static uint16_t DistanceSensor_readReg(int distanceSensorFD) {
char values[NUM_BYTES_READ];

unsigned char startRegAddr = DISTANCE_SENSOR_READING_MSB;
for (int i = 0; i < NUM_BYTES_READ; i++) {

https://github.com/adafruit/Adafruit_VL53L0X

unsigned char currAddr
int res = write(distanceSensorFD, &(currAddr), sizeof(currAddr));
if (res != sizeof(currAddr)) {

perror("I2C: Unable to write to i2c register.");

res = read(distanceSensorFD, &values[i], sizeof(*values));
if (res != sizeof(*values)) {
perror("I2C: Unable to read from i2c register");

}

// Convert the reading to distance
uint16_t dist = (((uint16_t)(values[@]) << 8)

exit(1);

exit(1);

return dist;

5.4 Main Program

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

// Add the other functions above here...

<stdio.h>
<stdlib.h>
<time.h>
<fentl.h>
<unistd.h>
<sys/ioctl.h>
<linux/i2c.h>
<linux/i2c-dev.h>
<stdbool.h>
<stdint.h>

int main() {

startRegAddr + 1i;

// Initialize the I2C device
int distanceSensorFD = DistanceSensor_init();

// Set device to continuous ranging mode

DistanceSensor_setContinuous(distanceSensorFD);

(uint16_t) (values[1]));

10

while(true) {
uint16_t dist = DistanceSensor_readReg(distanceSensorFD);

if (dist > 20 && dist < 8190) {
printf("Reading: %u mm\n", dist);
} else {
printf("Reading: Nothing detected\n");
}

// Wait 0.25 sec between each reading
struct timespec reqDelay = {0, 250000000} ;
nanosleep(&reqDelay, (struct timespec *) NULL);

}

return 90;

11

