

CMPT433
How to stream OpenCV proccessed

images over the network

Date: November 25, 2019

Group: Patrol Rover

 Ali Maladwala

Branko Bajcetic

 Amandeep Rehal

 Rehmanali Jiwani

i

Contents

1. Hardware and software setup ... 1

1.1 Troubleshooting ... 1

2. Building the Sample Code ... 2

2.1 Troubleshooting ... 3

3. Run the program ... 4

3.1 Troubleshooting ... 6

1

1. Hardware and software setup

a. Plug in your USB camera to the target device (BeagleBone Green).

b. Use the Linux command lsusb on the target to list all connected devices and

make sure your camera is listed.

c. Run the following commands on the target to install the needed

software(takes around 700mb of space):

i. sudo apt-get install libv4l-dev

sudo apt-get install libopencv-dev

sudo apt-get install ffmpeg

sudo apt-get install libav-tools

1.1 Troubleshooting

 If installing the software dependencies fails, run sudo apt-get update and

try again.

 Make sure you have enough space before installing the dependencies; you

may have to flash the BBG image if you run out of space.

2

2. Building the Sample Code

Copy the following C++ Sample Code (adapted from https://github.com/derekmolloy/boneCV) to a file named

camera.cpp:

#include<iostream>

#include<opencv2/opencv.hpp>

#include<opencv2/imgproc.hpp>

#include<time.h>

#include<unistd.h>

using namespace std;

using namespace cv;

int main(){

 //setup the camera settings (640x480 image)

 VideoCapture capture(0);

 capture.set(CV_CAP_PROP_FRAME_WIDTH,640);

 capture.set(CV_CAP_PROP_FRAME_HEIGHT,480);

 if(!capture.isOpened()){

 cout << "Failed to connect to the camera." << endl;

 }

 Mat frame;

 while(1){

 //capture and process images from the webcam

 capture >> frame;

 if(frame.empty()){

 cout << "Failed to capture an image" << endl;

 return;

 }

std::vector<uchar> buff;

//encode to jpg

 cv::imencode(".jpg", frame, buff);

 //write jpg to stdout so it can be piped

 fwrite(buff.data(),buff.size(),1,stdout);

 fflush(stdout);

 }

https://github.com/derekmolloy/boneCV

3

Explanation:

std::vector<uchar> buff;

 cv::imencode(".jpg", frame, buff);

The imencode function takes the image grabbed from the camera (stored in the frame

variable) and encodes it into a jpeg.

 fwrite(buff.data(),buff.size(),1,stdout);

 fflush(stdout);

The jpg data is written to stdout so it can be piped to the streaming application

Build the sample code using the following command when connected to the target (BBG):

g++ -O2 `pkg-config --cflags --libs opencv` -lrt camera.cpp –o camera –lpthread

2.1 Troubleshooting

 This is C++ code; make sure you use g++ and not gcc to compile.

 Make sure you are running the makefile through the target BBG, not the host

computer.

4

3. Run the program

This section assumes that the BBG is on the same network as the host and that the BBG IP

address is 192.168.7.2 and that the host ip is 192.168.7.1, adjust the following commands

with the other ip addresses as needed.

1. Run the following command to run the test program: ./camera | avconv -vcodec

mjpeg -r 5 -i pipe:0 -f mpegts udp://192.168.7.1:1234

Explanation: The jpeg images are piped (when they are written to stdout) to avconv which

runs with the following configuration to convert and stream the video:

 -vcodec mjpeg (Set the video codec to motion jpeg)

 -r 5 (Set the output video framerate to 5fps, OPTIONAL)

 pipe:0 (Read from stdin)

 mpegts (Output format: MPEG transport stream)

udp://192.168.7.1:1234 (stream over UDP to 192.168.7.1 on port 1234)

5

2. Open VLC on your host and press Media -> Open Network Stream and input:

udp://@:1234.

3. Press Play to view the video

6

3.1 Troubleshooting

 If your frame rate is too low you may want to run the camera and OpenCV

processing on a separate Beaglebone to improve performance.

 If you are not getting any video, run camera on its own and make sure that

images are being printed out to stdout/the terminal.

 If you want to tune avconv for your use case, take a look at these documents:

https://libav.org/avconv.html

 If you are not getting any video VLC, double check the hosts ip address.

 Try running the program over Ethernet via USB for debugging

https://libav.org/avconv.html

