Easy PRU programming on BBG with Adafruit 8*8 NeoMatrix

Our guide will be more focused on running the Adafruit 8*8 NeoMatrix lights (or any
other Adafruit NeoMatrix lights with chip) which requires PRU for timings. However this
guides provides with the infrastructure setup such that the reader can code anything
regarding PRU timing and interfacing with GPIO or PWM in C.

Index

What is PRU and why it is useful and powerful?
Basic Infrastructure Setup

Choosing Pins

Interacting with PRU in real-time outside PRU Space
Adafruit Lights with PRU

Conclusion

AU O

1. What is PRU and why it is useful and powerful?

A PRU is a Programmable Read-Time Unit is embedded in the AM335x chip, which are
two 32-bit 200MHz RISC cores. These cores are independent of the ARM which is
responsible of running everything (such as .c or .cpp programmes) or anything else in
User-space of BeagleBone. However PRU is isolated from the ARM so your PRU
independent or ARM and that’s why its PRU is preferred for fast real-time operations.
PRU has its own 8KB of program memory and data-memory each. There are two PRU
available to be used at a time. Due to abundance of technical details, this guide pertains

The subsystem available on the BEeagle boards is the next-generation PRU (PRUSSWZ)

Interraces -
wrm e] : PRU-ICSS
— Data RAMQ
3 Fast 4] OCP_HPY PRUC Core o (E KB)
{Interfaen/GGE maser part)| (BKB Program) 8 Sals EAVT
pri_peul_pea_r31[16:]‘ o Fcp — (8KB)
Po_peul_pea_i30[13:0] T Enhancad GRIO 2 g
Scralch Pad = = Shared RAM
2 E (12K8B)
OCP_HP1 PRU1 Core q
L3 Fast] (sterfoe 0P masier pt] (3KB Program) D_i E eCAPC Ba
Pr1_peu’_pe_nd1[18:3] [
pri_pourt_pe_i30[15:9] ¢ Enhanced GFIO EGP T = MIO_RT Ea
@ &
e
T EDMA Everts (1] b
e o . INTC g o R Je——p i
TeTSC_ADC Event 4 » 4 LARTO -
Events from Select Interupt Contreler % ;; ::g :::
Pevipiherals. CEG
3 i
Flgura medified from the AM335x PRU Reference Gukde

Figure 15-1: The PRU-ICSS architecture
Customized for the Beagle boards from an image that is courtesy of Texas Instruments

to a certain level of abstraction such that It is easy for course’s student to interact PRU
without any outside Library but still write student-interpretable code (in C).

In Derek’s book on SFU Library Website or Amazon or Copy from Brian Fraser, there is a
nice-introduction to PRU in chapter “Real-Time Interfacing with the PRU-ICSS” and also
provides a sample program to run a PRU-driven LED.

A good use-case scenario is if you want to drive a external simple LED on a breadboard
as well as a DC motor (which requires PWM). You can use two PRUs (PRUN=0 and
PRUN=1) which will not interfere with each other (Diagram above.)

2. Basic Infrastructure Setup

Because PRU is not in ARM space, it will require its own dedicated compiler, assembler
and linker. My guide is strongly based on PRUCookbook whose documentation helped
us with getting up and running with Adafruit 8*8 Neomatrix lights (or any other Adafruit
lights with WS2812 chip).

PRUCookbook Chap02 GitLink
There are some files which are core to the infrastructure such as:

e Makefile : This is our interface that does all the heavy lifting from starting PRU
components on BBG, compiling our special C program, linking (Inkpru), compile
(clpru) and stop PRU.

e AM335x_PRU.cmd : Linker file defines all the Register values which PRU needs
to know. You can directly look at these registers in
/sys/kernel/debug/remoteproc/remoteprocl or
/sys/kernel/debug/remoteproc/remoteproc2

e Resource_table_empty.h : Defines resource table for all PRU cores. Mainly the
remoteproc will need this.

e Setup.sh : It populates some environmental variables such as model of
beaglebone and configure pins accordingly. The env variables are used by
Makefile.

e Prugpio.h : Definition of all GPIO Pins, USR registers (three LEDs embedded on
BBG), Shared Mem (BBG). You can see multiple definitions of same pins because
the pin mapping depends on the Processor chip(AM5729 vs AM335x (ours)).

https://sfu-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01SFUL_ALMA21309839000003611&context=L&vid=SFUL&lang=en_US&search_scope=default_scope&adaptor=Local%20Search%20Engine&isFrbr=true&tab=default_tab&query=any,contains,derek%252
https://www.amazon.ca/Exploring-BeagleBone-Techniques-Building-Embedded/dp/1119533163/ref=sr_1_1?keywords=derek+beaglebone&qid=1574890931&sr=8-1
https://markayoder.github.io/PRUCookbook/
https://github.com/MarkAYoder/PRUCookbook/tree/master/docs/02start/code

We will not be actively changing all the files. Our main interaction will be with Makefile,
setup.sh and the .c file you will program (we will show how later one). To Run your first
PRU program, referring the code here .

BlinkLED.c is simple PRU program to power on/off a simple LED with PRU cycle delays. In
the code :

#include

<stdint.h>
#include <pru_cfg.h>
#include "resource_table_empty.h"
volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main(void)

{
volatile uint32_t gpio;
// Clear SYSCFG[STANDBY_INIT] to enable OCP master port
CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
// Use pru@_pru_r30_ 5 as an output i.e., 100000 or 0x0020
gpio = 0x0020;
// Infinite loop
while (1) {
__R30 7= gpio;
// delay for 0.25s (one quarter second
__delay cycles(50000000);
}
}

Some important things :

e _ R30:Thisis a register which passes input to the (PRU 1) prul_1
e _ R31:Thisis aregister which received outputs from (PRU 1) prul_1

So, basically, if you want to write to PRU (__R30), you’ll use the expression

__R30 7= gpio where gpio can be any GPIO or USR as defined in prugpio.h. You can also
define specific GPIO pin locally in BlinkLED.c and not take from prugpio.h. In this
example, gpio=0x0020 refers to pru0_pru_r30_5 which is GPIO pin P9_27 (gpio#115 in
/sys/class/gpio). Make sure you set the P9_27 to pruout through the command : config-
pin P9_27 pruout.

https://github.com/derekmolloy/exploringBB/tree/version2/chp15/pru/blinkLED

Head_p SPINS ADDR/OFESET Name GPIO NO. Mode? Modeb ModeS

Po_01 GND
Po 02 GHD
P9 03 DC_3.3V
Po_04 DC_2.3V
Po_05 wDD_5V
PS_06 wDD_5v
P9 07 SYS_Sv
Po_08 S¥S_Sv
P 08 PWR BUT
Pg_10 SYS_RESETn
P9 11 T 0xE70/070 UART4_RXD a0 gpio0[30] uartd_rxd_muxd
Pg_12 0 OxBTE/078 GRIO1_28 &0 gpioi[28] mcaspl_aclkr_muxd
Pg_13 29 xBT4/074 UARTA_THD 31 gpia[31] uartd_txd_mux?
PO 14 18 OxB48/048 EHRPWM1A 50 gpiol[18] ehrpwm1A_muxl
P9 15 16 OxBA0/040 [48 gpiol[16] ehrpwmi_tripmne input
o 16 18 Ol (e EHRPWILE 51 gpi1[18] ehrpwm1B_muxl
Po_17 a7 Oxd5e/15¢ 1261_seL 5 Epicd[5]
Pg_18 86 OxS5E/158 12€1_SDA 4 gpiod}4]
Py 10 95 0xa7e/17e 1202 seL 11 gpia0[13] prl_uartd_rts_n
P3 20 a4 Ox97E/178 12C2_SDA 12 gpio0[12] prl_vartQ cts_n
Pg_21 85 Ox854/154 UART2_THD 3 gpicd[3] EMU3_muxi
Pg_22 84 xS50/150 UART2_RKD 2 gpind[2] EMU2_muxi
Py 23 17 0xB44/044 GPo1_17 49 gpisl[17] ehrpwml_synen
Pg 24 a7 Ox384/184 UARTL_THD 15 gpil[15] grl_prud_pru_r31 16 prl_uart_tad
Pg_25 107 OxBac/iac GRO2_21 17 gpiod[21] pri_prud pru_r3l 7 pri_prul_pru_r30_7
Py 26 96 RSB0/ 150 UART1_RKD 14 gpiol[14] pri_prul_pru_rdl 16 opriuand e
Py 27 105 DBad/1ad GAMO3 19 115 Rpad[19] prl prudl pru 131 & prl prul pru 30 §
Pg 28 103 09518 SPI1_CS0 113 gpi3[17] prl_prud pru_r31 3 pri_prul_pru_r30 3
Pg_20 101 0%334/154 SP1_DO 111 gpiad[15] pri_prud pru_rdl 1 pri_prul_pru_r30_1
Pg_30 102 OwB9E/158 SP1_D1 112 gpiod[15] pri_prud pru_rdl 2 pri_prul_pru_r30_2
Py 11 100 0x890/190 SPI1_SCLE 110 gpial[1d] grl_prsl pru_r31 0 pri_prul_pru_r30 0
Py 32 VADC
Pg_33 AN
Pg_34 AGND
g 35 AING
P9 36 AINS
Pg_37 N2
Pg_38 AIN3
Py 33 AiND
PG 40 Ain1
Pa_a1a 109 Ox3ba/1bd CLKOUT2 20 gpio0[20] EMU3_muxD) pri_pru0_pru_r31_16
P3_418 Oudal/1ad GPIO3_20 116 gpio3[20] prl_prud pru_r3l & pri_prul_pru_r30_6
F_42A () Ox064/164 GRIOD T 7 gpicd[7] wdma_event_intr mmcd_sdwp
Po_a28 OuSal/120 GRO2_18 114 gpi3[18] pri_prud_pru_ri1_4 pri_prul_pru_r30 4
Pg_a3 GND
Pg_a4 GND
P9 a5 GHND
PO a6 GND
P9 Meader cat SPINS ADDR + Name GPIO NO. Mode 7

3. Choosing Pins :

You can refer the BBG GPIO Pin layout on CMPT433 websites for P8 Headers and P9
Headers.

If you want to output to PRU, choose PRU number (0 or 1) first. Then search for
prl_pruA_pru_3B_C (A=PRU# either 0 or 1,B = 0/1 (output or input), C = GPIO#). For
instance, prl_pru0_pru_r30_5is GPIO Pin P9_27 running PRU 0 to output. Mode 5 in
the chart above have output pins while Mode4 have input. Again If you want to set a
GPIO to PRU output or input, you will configure them :

config-pin pin# pruin

config-pin pin# pruout

More info about this stage can be found here in PRUCookbook tutorial

4. Interacting with PRU in real-time outside PRU Space

For instance, you were able to run PRU through command : make PRUN=0
TARGET=BIlinkLED , and turn it off make PRUN=0 stop. Next thing is how you are going to
interact with the BlinkLED program?. In normal .c you can interact via File I/0,

https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP8HeaderTable.pdf
https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP9HeaderTable.pdf
https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP9HeaderTable.pdf
https://markayoder.github.io/PRUCookbook/03details/details.html

stdin/stdou, Pipes etc. Because your BlinkLED is running in PRU Space, you can’t use
traditional ways to interact with your code from outside.

@sudo cp $(GEN_DIR)/$(TARGET).out /lib/firmware/am335x-pru$(PRUN)-fw

This snippet from Makefile copies your .c code to special directory
/lib/firmware/am335x-pruX —fw, your blinkLED.c is not your regular C code. For
instance, you can’t use printf. (Yes you have to be careful during testing and many other
libraries.). The include_path tells you what libraries you can use in your PRU C code.

That’s why we will use prmsg kernel driver. The Example code can be found here :
under section “ 1.14 Controlling NeoPixels through a Kernel Driver”

The workflow is this :

1. sudo chmod 666 /dev/rpmsg_pru30
2. echo “my message” > /dev/rpmsg_pru30

Basically, the code line here in neo4.c (from PRUCookbook link)

while (pru_rpmsg receive(&transport, &src, &dst, payload, &len) == PRU_RPMSG_SUCCESS)
In Variable payload, you will receive the message written to /dev/rpmsg_pru30 .In the
Example code, you can see the parsing techniques (strtol with strchr functions).

This means you can make another .c program or shell programs that can interact with
your PRU. Again to clarify, PRU .c program that have actual code is stored inside
/lib/firmware..., you can write to /dev/rpmsg_pru30 to pass message from ARM to PRU
and in the /lib/firmware ... c code, your message will be stored inside payload variable.

5. Adafruit 8*8 NeoMatrix with PRU

The example in PRUCookbook is a great resource for running PRU driven application in
BeagleBone Green. However, understanding how PRU works vs actually running PRU
code are two different things. Another PRU guide in cmpt433 goes through low-level
PRU command line tools which are not useful for running out .c type code.

https://markayoder.github.io/PRUCookbook/05blocks/blocks.html

We followed the base circuit diagram same as RaspberryPi here with some changes.
Adafruit neo products require 5V so we use Level-shifters and its data-sheet will explain

|

SNS4AHCT125...J OR W PACKAGE
SN74AHCT125...D, DB, DGV, N, NS,
OR PW PACKAGE

(TOP VIEW)
10E (|1 U‘M]Vcc
1A (]2 13[] 40E
1y [|s 12[] 4A
20E [|4 11[] 4y
2a(ls 10[] 30E
2y [|e 9[] 3A
GND (|7 8f] ay

The Neomatrix has three wires: Data-in, Ground
and Power. The Ground and Power are self-
explanatory. For Data-in it goes through level-
shifter (Orange wire to 1Y of level-shifter). In the
Image above, you also have to connect 5V wires
into + and — to make circuit complete (Image on
left)

5v

GND

Pafain

P - — BONUS : It is possible to join multiple NeoMatrix

s " together for more fun. You have to solder one
more wire for Data-out (opposite side of

TIPS Neomatrix) and that connects to Data-in of next

Dala- flow S Neomatrix. We have not done and leave it to the
anp

D‘:: = DaM h

reader to experiment with this.

For our 8*8 Adafruit lights (https://www.adafruit.com/product/1487) to run on
BeagleBoneGreen, you can take the basic infrastructure code(Makefile,resource-
table,setup.sh etc..) from either PRUCookbook example or Derek’s BeagleBone book’s
example code and start changing to your needs. | will quickly go over changes | made to
run NeoMatrix:

https://learn.adafruit.com/neopixels-on-raspberry-pi/raspberry-pi-wiring?fbclid=IwAR1Yrrz6Xw4b0czMG7nFwm_dDIIuSCzSAcRIiPQ0iwfB85anXOWCRTfP2hU.
https://www.adafruit.com/product/1787
https://cdn-shop.adafruit.com/product-files/1787/1787AHC125.pdf
https://www.adafruit.com/product/1487

1. Makefile :
a. Some permissions problems. Add sudo to lines where there’s command

such as sudo cp $(GEN DIR)/$ (TARGET) .out /lib/firmware/$ (CHIP)-
pru$ (PRUN) —fw

b. Support Files : Change directories for external files such as resource_table
or AM335x_pru.cmd. Its preferred to keep everything in same folder for
simplicity.

c. Compile your own normal .c program : Though Makefile is for compiling
PRU C programs using it’'s own compiler and linker. However you can
compile your own code. For instance

neomatrix interface

$(CC_C INTERFACE) $(CFLAGS INTERFACE) $Q.c $" -o
$ (NEOMATRIX OUTOUTDIR)/$@ -lpthread -1m

Inside Makefile also compiles my neomatrix_interface.c which writes to
/dev/rpmsg_pru30.

This is how my default make looks like :

all: setup neomatrix interface install start

Then inside my PRU C function | wrote with neo4.c(in PRUCookbook Chapt-5) as a base
program :

void TurnAllGreen (void) {

uint32 t custom color = 0x0f0000; // blue color
uint32 t color[64] ;

int i, 3, k;
for (k=0;k<64;k++) {
color[k] = custom color;

}

for (3=0; j<64; j++) {
for (i=23; i>=0; i--) {
// logic to enable which leds to lit up.
if(color[j] & (0x1<<i)) {
bit on();
}
else {
bit off();
}

}
}
void bit on(void) {
__R30 |= gpio; // Set the GPIO pin to 1

__delay cycles (oneCyclesOn-1);
__R30 &= ~(gpio); // Clear the GPIO pin
__delay cycles(oneCyclesOff-2);

}

void bit off (void) {

__R30 |= gpio; // Set the GPIO pin to 1
__delay cycles(zeroCyclesOn-1);
__R30 &= ~(gpio); // Clear the GPIO pin

__delay cycles(zeroCyclesOff-2);

It is a sample program to turn on all LEDs green. You can call TurnAllGreen(void) inside
PRU C code’s main() to evoke. Originally, we have to write many other functions to
simulate AudioVisualizer driven by Audio.

Also make the Adafruit Lights accepts GRB values. That means 0xff0000 = Pure Green,
0x00ff00 = Pure Red and 0x0000ff = Pure Blue. This requirement can be found in
WS2812 data-sheet.

Note : If you have other variants of Adafruit Lights which still uses WS2812, this guide
will be the same. However you have to change some variables above in
TurnAllGreen(void) like , # of LEDS (other # than 64)

6. Conclusion

We tried to cover the important big stuff, however many other details have been
omitted from the guide because of length restrictions. | would suggest to approach it
this way:

1. Replicate PRUCookbook code or BlinkLED example from Derek Github on your
BBG to ensure you understand and run Basic PRU program

2. Turn on/off simple LED Circuit (resistor, LED diode with + from gpio and — to
ground) or USR LEDs on BBG.

3. Figure out wiring for your Adafruit Neo product.

4. Simple Turn on/off program for your Adafruit (like TurnAllGreen)

5. Then write your custom code in PRU C code or interact via Kernel Driver for more
sophisticated programs.

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://www.adafruit.com/category/168
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://markayoder.github.io/PRUCookbook/02start/start.html
https://github.com/derekmolloy/exploringBB/tree/version2/chp15/pru/blinkLED

