
Easy PRU programming on BBG with Adafruit 8*8 NeoMatrix

Our guide will be more focused on running the Adafruit 8*8 NeoMatrix lights (or any

other Adafruit NeoMatrix lights with chip) which requires PRU for timings. However this

guides provides with the infrastructure setup such that the reader can code anything

regarding PRU timing and interfacing with GPIO or PWM in C.

Index

1. What is PRU and why it is useful and powerful?

2. Basic Infrastructure Setup

3. Choosing Pins

4. Interacting with PRU in real-time outside PRU Space

5. Adafruit Lights with PRU

6. Conclusion

1. What is PRU and why it is useful and powerful?

A PRU is a Programmable Read-Time Unit is embedded in the AM335x chip, which are

two 32-bit 200MHz RISC cores. These cores are independent of the ARM which is

responsible of running everything (such as .c or .cpp programmes) or anything else in

User-space of BeagleBone. However PRU is isolated from the ARM so your PRU

independent or ARM and that’s why its PRU is preferred for fast real-time operations.

PRU has its own 8KB of program memory and data-memory each. There are two PRU

available to be used at a time. Due to abundance of technical details, this guide pertains

to a certain level of abstraction such that It is easy for course’s student to interact PRU

without any outside Library but still write student-interpretable code (in C).

In Derek’s book on SFU Library Website or Amazon or Copy from Brian Fraser, there is a

nice-introduction to PRU in chapter “Real-Time Interfacing with the PRU-ICSS” and also

provides a sample program to run a PRU-driven LED.

A good use-case scenario is if you want to drive a external simple LED on a breadboard

as well as a DC motor (which requires PWM). You can use two PRUs (PRUN=0 and

PRUN=1) which will not interfere with each other (Diagram above.)

2. Basic Infrastructure Setup

Because PRU is not in ARM space, it will require its own dedicated compiler, assembler

and linker. My guide is strongly based on PRUCookbook whose documentation helped

us with getting up and running with Adafruit 8*8 Neomatrix lights (or any other Adafruit

lights with WS2812 chip).

PRUCookbook Chap02 GitLink

There are some files which are core to the infrastructure such as:

• Makefile : This is our interface that does all the heavy lifting from starting PRU

components on BBG, compiling our special C program, linking (lnkpru), compile

(clpru) and stop PRU.

• AM335x_PRU.cmd : Linker file defines all the Register values which PRU needs

to know. You can directly look at these registers in

/sys/kernel/debug/remoteproc/remoteproc1 or

/sys/kernel/debug/remoteproc/remoteproc2

• Resource_table_empty.h : Defines resource table for all PRU cores. Mainly the

remoteproc will need this.

• Setup.sh : It populates some environmental variables such as model of

beaglebone and configure pins accordingly. The env variables are used by

Makefile.

• Prugpio.h : Definition of all GPIO Pins, USR registers (three LEDs embedded on

BBG), Shared Mem (BBG). You can see multiple definitions of same pins because

the pin mapping depends on the Processor chip(AM5729 vs AM335x (ours)).

https://sfu-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01SFUL_ALMA21309839000003611&context=L&vid=SFUL&lang=en_US&search_scope=default_scope&adaptor=Local%20Search%20Engine&isFrbr=true&tab=default_tab&query=any,contains,derek%252
https://www.amazon.ca/Exploring-BeagleBone-Techniques-Building-Embedded/dp/1119533163/ref=sr_1_1?keywords=derek+beaglebone&qid=1574890931&sr=8-1
https://markayoder.github.io/PRUCookbook/
https://github.com/MarkAYoder/PRUCookbook/tree/master/docs/02start/code

We will not be actively changing all the files. Our main interaction will be with Makefile,

setup.sh and the .c file you will program (we will show how later one). To Run your first

PRU program, referring the code here .

BlinkLED.c is simple PRU program to power on/off a simple LED with PRU cycle delays. In

the code :

#include

<stdint.h>

#include <pru_cfg.h>

#include "resource_table_empty.h"

volatile register uint32_t __R30;

volatile register uint32_t __R31;

void main(void)

{

 volatile uint32_t gpio;

 // Clear SYSCFG[STANDBY_INIT] to enable OCP master port

 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;

 // Use pru0_pru_r30_5 as an output i.e., 100000 or 0x0020

 gpio = 0x0020;

 // Infinite loop

 while (1) {

 __R30 ^= gpio;

 // delay for 0.25s (one quarter second

 __delay_cycles(50000000);

 }

}

Some important things :

• __R30 : This is a register which passes input to the (PRU 1) pru1_1

• __R31 : This is a register which received outputs from (PRU 1) pru1_1

So, basically, if you want to write to PRU (__R30), you’ll use the expression

__R30 ^= gpio where gpio can be any GPIO or USR as defined in prugpio.h. You can also

define specific GPIO pin locally in BlinkLED.c and not take from prugpio.h. In this

example, gpio=0x0020 refers to pru0_pru_r30_5 which is GPIO pin P9_27 (gpio#115 in

/sys/class/gpio). Make sure you set the P9_27 to pruout through the command : config-

pin P9_27 pruout.

https://github.com/derekmolloy/exploringBB/tree/version2/chp15/pru/blinkLED

3. Choosing Pins :

You can refer the BBG GPIO Pin layout on CMPT433 websites for P8 Headers and P9

Headers.

If you want to output to PRU, choose PRU number (0 or 1) first. Then search for

pr1_pruA_pru_3B_C (A=PRU# either 0 or 1 ,B = 0/1 (output or input), C = GPIO#). For

instance, pr1_pru0_pru_r30_5 is GPIO Pin P9_27 running PRU 0 to output. Mode 5 in

the chart above have output pins while Mode4 have input. Again If you want to set a

GPIO to PRU output or input, you will configure them :

config-pin pin# pruin

config-pin pin# pruout

More info about this stage can be found here in PRUCookbook tutorial

4. Interacting with PRU in real-time outside PRU Space

For instance, you were able to run PRU through command : make PRUN=0

TARGET=BlinkLED , and turn it off make PRUN=0 stop. Next thing is how you are going to

interact with the BlinkLED program?. In normal .c you can interact via File I/O,

https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP8HeaderTable.pdf
https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP9HeaderTable.pdf
https://opencoursehub.cs.sfu.ca/bfraser/solutions/433/zen/BeagleboneBlackP9HeaderTable.pdf
https://markayoder.github.io/PRUCookbook/03details/details.html

stdin/stdou, Pipes etc. Because your BlinkLED is running in PRU Space, you can’t use

traditional ways to interact with your code from outside.

@sudo cp $(GEN_DIR)/$(TARGET).out /lib/firmware/am335x-pru$(PRUN)-fw

This snippet from Makefile copies your .c code to special directory

/lib/firmware/am335x-pruX –fw, your blinkLED.c is not your regular C code. For

instance, you can’t use printf. (Yes you have to be careful during testing and many other

libraries.). The include_path tells you what libraries you can use in your PRU C code.

That’s why we will use prmsg kernel driver. The Example code can be found here :

under section “ 1.14 Controlling NeoPixels through a Kernel Driver“

The workflow is this :

1. sudo chmod 666 /dev/rpmsg_pru30

2. echo “my message” > /dev/rpmsg_pru30

Basically, the code line here in neo4.c (from PRUCookbook link)

while (pru_rpmsg_receive(&transport, &src, &dst, payload, &len) == PRU_RPMSG_SUCCESS)

In Variable payload, you will receive the message written to /dev/rpmsg_pru30 .In the

Example code, you can see the parsing techniques (strtol with strchr functions).

This means you can make another .c program or shell programs that can interact with

your PRU. Again to clarify, PRU .c program that have actual code is stored inside

/lib/firmware… , you can write to /dev/rpmsg_pru30 to pass message from ARM to PRU

and in the /lib/firmware … c code, your message will be stored inside payload variable.

5. Adafruit 8*8 NeoMatrix with PRU

The example in PRUCookbook is a great resource for running PRU driven application in

BeagleBone Green. However, understanding how PRU works vs actually running PRU

code are two different things. Another PRU guide in cmpt433 goes through low-level

PRU command line tools which are not useful for running out .c type code.

https://markayoder.github.io/PRUCookbook/05blocks/blocks.html

We followed the base circuit diagram same as RaspberryPi here with some changes.

Adafruit neo products require 5V so we use Level-shifters and its data-sheet will explain

The Neomatrix has three wires: Data-in, Ground

and Power. The Ground and Power are self-

explanatory. For Data-in it goes through level-

shifter (Orange wire to 1Y of level-shifter). In the

Image above, you also have to connect 5V wires

into + and – to make circuit complete (Image on

left)

BONUS : It is possible to join multiple NeoMatrix

together for more fun. You have to solder one

more wire for Data-out (opposite side of

Neomatrix) and that connects to Data-in of next

Neomatrix. We have not done and leave it to the

reader to experiment with this.

For our 8*8 Adafruit lights (https://www.adafruit.com/product/1487) to run on

BeagleBoneGreen, you can take the basic infrastructure code(Makefile,resource-

table,setup.sh etc..) from either PRUCookbook example or Derek’s BeagleBone book’s

example code and start changing to your needs. I will quickly go over changes I made to

run NeoMatrix:

https://learn.adafruit.com/neopixels-on-raspberry-pi/raspberry-pi-wiring?fbclid=IwAR1Yrrz6Xw4b0czMG7nFwm_dDIIuSCzSAcRIiPQ0iwfB85anXOWCRTfP2hU.
https://www.adafruit.com/product/1787
https://cdn-shop.adafruit.com/product-files/1787/1787AHC125.pdf
https://www.adafruit.com/product/1487

1. Makefile :

a. Some permissions problems. Add sudo to lines where there’s command

such as sudo cp $(GEN_DIR)/$(TARGET).out /lib/firmware/$(CHIP)-
pru$(PRUN)-fw

b. Support Files : Change directories for external files such as resource_table

or AM335x_pru.cmd. Its preferred to keep everything in same folder for

simplicity.

c. Compile your own normal .c program : Though Makefile is for compiling

PRU C programs using it’s own compiler and linker. However you can

compile your own code. For instance

neomatrix_interface :

 $(CC_C_INTERFACE) $(CFLAGS_INTERFACE) $@.c $^ -o

$(NEOMATRIX_OUTOUTDIR)/$@ -lpthread -lm

Inside Makefile also compiles my neomatrix_interface.c which writes to

/dev/rpmsg_pru30.

This is how my default make looks like :

all: setup neomatrix_interface install start

Then inside my PRU C function I wrote with neo4.c(in PRUCookbook Chapt-5) as a base

program :

void TurnAllGreen(void){

 uint32_t custom_color = 0x0f0000; // blue color

 uint32_t color[64] ;

 int i, j, k;

 for(k=0;k<64;k++){

 color[k] = custom_color;

 }

 for(j=0; j<64; j++) {

 for(i=23; i>=0; i--) {

 // logic to enable which leds to lit up.

 if(color[j] & (0x1<<i)) {

 bit_on();

 }

 else {

 bit_off();

 }

 }

 }

}

void bit_on(void){

 __R30 |= gpio; // Set the GPIO pin to 1

 __delay_cycles(oneCyclesOn-1);

 __R30 &= ~(gpio); // Clear the GPIO pin

 __delay_cycles(oneCyclesOff-2);

}

void bit_off(void){

 __R30 |= gpio; // Set the GPIO pin to 1

 __delay_cycles(zeroCyclesOn-1);

 __R30 &= ~(gpio); // Clear the GPIO pin

 __delay_cycles(zeroCyclesOff-2);

}

It is a sample program to turn on all LEDs green. You can call TurnAllGreen(void) inside

PRU C code’s main() to evoke. Originally, we have to write many other functions to

simulate AudioVisualizer driven by Audio.

Also make the Adafruit Lights accepts GRB values. That means 0xff0000 = Pure Green ,

0x00ff00 = Pure Red and 0x0000ff = Pure Blue. This requirement can be found in

WS2812 data-sheet.

Note : If you have other variants of Adafruit Lights which still uses WS2812, this guide

will be the same. However you have to change some variables above in

TurnAllGreen(void) like , # of LEDS (other # than 64)

6. Conclusion

We tried to cover the important big stuff, however many other details have been

omitted from the guide because of length restrictions. I would suggest to approach it

this way:

1. Replicate PRUCookbook code or BlinkLED example from Derek Github on your

BBG to ensure you understand and run Basic PRU program

2. Turn on/off simple LED Circuit (resistor, LED diode with + from gpio and – to

ground) or USR LEDs on BBG.

3. Figure out wiring for your Adafruit Neo product.

4. Simple Turn on/off program for your Adafruit (like TurnAllGreen)

5. Then write your custom code in PRU C code or interact via Kernel Driver for more

sophisticated programs.

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://www.adafruit.com/category/168
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://markayoder.github.io/PRUCookbook/02start/start.html
https://github.com/derekmolloy/exploringBB/tree/version2/chp15/pru/blinkLED

