

Installing PortAudio on a

BeagleBone Green

Written for Kernel 4.9+

Version note​: This guide targets boards which have the cape management built into

UBoot, not the Linux Cape Manager (which is now removed).

Last Update​: 27 Nov 2019

Team: ​Tin Can Telephones

This document guides the user through:

1. Explaining PortAudio

2. Why PortAudio can be used for Audio Programming in C

3. How to install and use PortAudio

4. Troubleshooting common errors

Formatting:

1. Host (desktop) commands starting with $ are Linux console commands:

$ echo "Hello world"

2. Target (board) commands start with #:

echo "On embedded board"

3. All commands are case sensitive.

1

Introduction
PortAudio ​(​http://www.portaudio.com/​) is a portable library that exposes a

convenient stream API for manipulating audio, in both the record and playback directions.

It is straightforward to compile and include in your C project. After ​#include​-ing, it is simple

to configure for your target device. The library is compatible with ALSA, so if you have

completed the Audio Guide, you are half way to finishing this guide. We successfully used

PortAudio in our VoIP project.

Why use PortAudio?
ALSA ​(asoundlib) is not a very (student/user)-friendly library; you cannot simply

#include​ and start reading/writing audio. Runtime configuration is esoteric and, worst of all,

undocumented. The API is labyrinthine and poorly documented. This means that if you

want to do something more complicated than play a sine wave or adjust your input/output

volume, you must sift through thousands of lines of example code.

You can alleviate these issues by using ​PortAudio​.

Installation

Prerequisites

● ALSA must be installed and configured on the target (the BeagleBone).

● The target must have internet access enabled.

● The target must have SSH or screen access.

● The target must have NFS set up and ​/mnt/remote​ mounted.

2

http://www.portaudio.com/

Install libasound2-dev on the target

Run the following command on the target machine to install the appropriate sound library:

sudo apt-get install libasound2-dev

Set Up PortAudio on the target

Run the following commands on the target machine to download, make, and properly

configure the PortAudio library:

cd /mnt/remote/

wget http://portaudio.com/archives/pa_stable_v190600_20161030.tgz

tar xvzf pa_stable_v190600_20161030.tgz

cd ./portaudio

./configure && make

Important: Ensure that PortAudio is correctly configured by checking the

configuration summary.

You should see output like this:

Configuration summary:

 Target armv7l-unknown-linux-gnueabihf

 C++ bindings no

 Debug output no

 ALSA yes

 ASIHPI no

 OSS yes

3

 JACK no

It is vital that ALSA is ​yes​. Otherwise, libasound2-dev has not been correctly installed on the

target.

Copy binary and headers to project folder

After running ​make​, run the following commands (within the PortAudio archive directory) to

duplicate the PortAudio prebuilt static library file (​libportaudio.a​) and the header file

(​portaudio.h​) into your own project:

cp lib/.libs/libportaudio.a /location/of/your/project/

cp include/portaudio.h /location/of/your/project/include/

Now you can ​#include​ the ​portaudio.h​ file in your source code without errors or

warnings at compile time.

If you would like to cross-compile from the host machine to the target machine, then copy

these two files into your own project directory on the host machine.

To build your final executable, your example gcc command should look similar to the

following:

gcc main.c libportaudio.a -lm -lasound -pthread -o YOUR_BINARY

If you can compile with no errors, then you have correctly compiled PortAudio.

4

Troubleshooting

Fixing runtime error messages

PortAudio is not smart enough to figure out which devices are actually read/writeable by

itself. It may attempt to access devices that are exposed by ALSA but are not actually used.

In this case, during runtime, calling ​Pa_Initialize()​ will produce an avalanche of errors.

This can be fixed by correctly configuring ​alsa.conf​ located on the target at:

/usr/share/alsa/alsa.conf ​.

Comment out the following lines in the configuration file, and run again:

pcm.front cards.pcm.front

pcm.rear cards.pcm.rear

pcm.center_lfe cards.pcm.center_lfe

pcm.side cards.pcm.side

pcm.surround21 cards.pcm.surround21

pcm.surround40 cards.pcm.surround40

pcm.surround41 cards.pcm.surround41

pcm.surround50 cards.pcm.surround50

pcm.surround51 cards.pcm.surround51

pcm.surround71 cards.pcm.surround71

pcm.iec958 cards.pcm.iec958

pcm.spdif iec958

pcm.hdmi cards.pcm.hdmi

pcm.modem cards.pcm.modem

pcm.phoneline cards.pcm.phoneline

5

If you still see error messages such as​:

ALSA lib pcm.c:2495:(snd_pcm_open_noupdate) Unknown PCM surround71

You should just note down which device (in this case “surround71”), then comment out the

corresponding line in the config file. They are all grouped together, so it’s easy to find.

Repeat this process until there are no more runtime errors.

Congratulations, you are done.

ALSA Configuration

If alsa.conf is still not working for you, we have attached our modified version of alsa.conf

which worked for our project.

6

