

How-To Guide for 8x8 LED Matrix

For the Mini-Games Console, a 1.2” square monochrome (green) 8x8 LED matrix board

from Adafruit was chosen as the main display. The board has a Holtek HT16K33 LED

matrix driver chip which has an I2C interface for controlling the 8x8 LED display. The

Adafruit website provides schematics for the board: (https://learn.adafruit.com/adafruit-

led-backpack/downloads)

I. Ordering The Board

The Adafruit part number for the board is 1632 and it can be ordered directly from the

Adafruit website (https://www.adafruit.com/product/1632) or other resellers like Amazon,

Digikey, or Mouser. Because of availability, the 8x8 LED kits were ordered from

Elmwood Electronics (https://elmwoodelectronics.ca/products/adafruit-small-1-2-8x8-led-

matrix-w-i2c-backpack-red) for C$19.99 plus shipping.

II. Assembling The Board

The 8x8 LED kit came with an 8x8 LED matrix, a PCB with the driver chip already

soldered, and a 4-pin header for connecting to the BeagleBone Green. The 8x8 LED

matrix and 4-pin header have to be manually soldered to the board.

Tools needed: soldering iron and solder.

The Adafruit website provides instructions for soldering the LED matrix and 4-pin

header to the board:

https://learn.adafruit.com/adafruit-led-backpack/1-2-8x8-matrix

https://learn.adafruit.com/adafruit-led-backpack/downloads
https://learn.adafruit.com/adafruit-led-backpack/downloads
https://www.adafruit.com/product/1632
https://elmwoodelectronics.ca/products/adafruit-small-1-2-8x8-led-matrix-w-i2c-backpack-red
https://elmwoodelectronics.ca/products/adafruit-small-1-2-8x8-led-matrix-w-i2c-backpack-red
https://learn.adafruit.com/adafruit-led-backpack/1-2-8x8-matrix

The web page also shows how to plug the 4-pin header into a breadboard, such as the

one provided in the BeagleBoard Green kit for the CMPT433 course, and then solder

the 4 pins using the breadboard as mechanical support.

After completing the soldering, the 8x8 LED matrix board plugged into a breadboard

should look something like the following:

III. Wiring Connections

The board has markings for the 4 signals of the 4-pin header.

From left to right (see picture above), the signals are:

‘C’ = CLK (or SCL) signal for the I2C interface

‘D’ = DAT (or SDA) signal for the I2C interface

‘-’ = GND (ground) for power

‘+’ = VCC+ (positive) for power

Use jumper wires provided with the BeagleBone Zen Cape kit which have a male pin on

one end and female connector on the other end to connect the 4 signals between the

BeagleBone Green board and the 8x8 LED matrix.

The I2C channel 1 (I2C1) signals of the BeagleBone P9 connector (pins 17 and 18),

which is shared with other devices on the Zen Cape board, will be used to connect to

the 8x8 LED matrix board.

STEPS:

1) For a more solid connection on the P9 connector, plug in the 2x23 connector with

long leads (as shown below) that was included with the Zen Cape kit into the P9

connector on the Zen Cape board.

2) Use 4 of the jumper wires mentioned previously and connect the female end to

the following pins on the long P9 pins on the Zen Cape:

P9 pin 1 = GND

P9 pin 3 = 3V3

P9 pin 17 = CLK signal for I2C

P9 pin 18 = DAT signal for I2C

The row of P9 pins on the edge of the board are the odd numbered pins (1, 3,

5, …, 45) and the row of pins beside it are the even numbered pins (2, 4, 6, …,

46).

It is recommended to pass the jumper wires underneath the BeagleBone board

from the breadboard area to the P9 side of the board. The following picture

shows the wires after making these connections:

3) Connect the male pin end of the 4 jumper wires to the corresponding columns on

the breadboard where the 8x8 LED matrix board is plugged into:

P9 pin 1 wire <==> ‘-’

P9 pin 3 wire <==> ‘+’

P9 pin 17 wire <==> ‘C’

P9 pin 18 wire <==> ‘D’

The picture below shows the wires after making the connections:

IV. Programming

The Holtek HT16K33 controller’s I2C slave address is 0x70. The datasheet can be

found here:

https://cdn-shop.adafruit.com/datasheets/ht16K33v110.pdf

Initialization

There are only a few registers to write for initialization:

1) System Setup Register (command code 0x20):

Write 0x21 (bit 0 of command code = 1) to turn on system oscillator.

2) Dimming Register (command code 0xE0):

Write 0xE8 (bits 3-0 is 8) to set the brightness level (0 to 15) to middle

brightness.

3) Display Setup Register (command code 0x80):

Write 0x81 (bit 0 is 1) to turn on the display with no blinking (bits 2-1 is 0).

4) Display RAM (command code 0x00 followed by 16 bytes):

Write 0x00 (command code) followed by 16 zeros to initialize all pixels to 0 (off).

Pixel Locations Mapping

Each pixel is one bit and 8 pixels fit into one byte. The HT16K33 can actually drive up

to 16 columns x 8 rows (lines) of LEDs. This is why there are 16 bytes (2 bytes per row)

sent for the “Display RAM” command code. For the 8x8 LED matrix, only the lower 8

bits (D7-D0) of each row of the display RAM in the HT16K33 are used.

An 8-byte (1-byte column x 8 row) local display buffer (array) is used to hold the 8x8

pixels. Routines which draw pixels for the display write to this local display buffer. The

first byte (array element 0) of the local buffer corresponds to the top line of dots of the

8x8 LED matrix, and the eighth byte (array element 7) corresponds to the bottom line of

dots. For each byte, bit 7 corresponds to the left most dot in the row and bit 0

corresponds to the rightmost dot.

A pixel remapping routine is needed to map the local display buffer pixels into a

transformed buffer to be sent to the HT16K33’s display RAM so that the pixels are

displayed correctly at the right locations on the 8x8 LED display. Some experimentation

is needed to determine how the pixels are mapped from the HT16K33’s display RAM to

the 8x8 LED matrix by looking at the schematic of the Adafruit 1632 board to determine

the connections between HT16K33 and the 8x8 LED array, and writing some test

patterns to the local buffer to determine how pixels show up on the display. The

Adafruit website does not have any description of which bit in the display RAM of the

HT16K33 controller map to which dot on the 8x8 LED array.

https://cdn-shop.adafruit.com/datasheets/ht16K33v110.pdf

Software Routines Module for 8x8 LED Display - “ext_8x8led.c”

The final static (local) extLED8x8RemapIcon() function in “ext_8x8led.c” is the result

of the previously mentioned experimentation and it remaps a local 8x8 buffer into a

transformed 8x8 buffer for sending to the HT16K33 controller’s display RAM to correctly

display pixels on the 8x8 LED matrix. There is also a public

extLED8x8SetDisplayRotation() function for setting the rotation (0, 90, 180, 270

degrees) between the local buffer image and the displayed image. The rotation setting

is factored into the extLED8x8RemapIcon() function.

The extLED8x8Init() function performs the initialization described earlier.

The extLED8x8DisplayUpdate() function remaps the local display buffer to a

transformed buffer and sends the transformed buffer to the HT16K33 to display on the

8x8 LED matrix.

The extLED8x8DisplayOn() function turns on the 8x8 LED matrix.

The extLED8x8DisplayOff() function turns off the 8x8 LED matrix.

The extLED8x8DisplayBrightness() function sets the brightness level of the 8x8 LED

matrix.

The extLED8x8FillPixel() function fills the display with either 0s (pixel off) or 1s (pixel

on).

The extLED8x8DrawPixel() draws a pixel (0=off or 1=on) on the local display buffer.

The extLED8x8LoadImage() loads an 8x8 icon image (8 bytes) on the local display

buffer.

