Using C++ Code in a C Project

Last update: July 26, 2018

Table of Content

Writing a C++ Module Ready for C Use 1
Compile and Linking Modules in Makefile 2
Attachment: The Complete Makefile 4

During the development of a C project, one may encounter a situation when a C++ library is needed
for the project or writing a C++ module in the project, but it cannot be achieved by default without
specific modifications. This guide will walk you through the steps needed to invoke c++ functions in a
C project.

Writing a C++ Module Ready for C Use

The following is an example module whose implementation is in C++ using STL libraries but ported for
C use.

util.h

#ifndef UTIL H_
#tdefine _UTIL_H_

#tifdef _ cplusplus
extern "C" {
#tendif

long long Util_getCurrentTime();
void Util InvokeWithDelay(long delayTime, void (*callback)(void));

#ifdef _ cplusplus
}
#tendif

#endif

util.cpp

#include <chrono>
#include <thread>
#include "util.h"

extern

llcll

long long Util_getCurrentTime() {
using namespace std::chrono;
using cast = duration<long long>;
return duration_cast<cast>(system clock::now().time since epoch()).count();

extern

ncn

void Util InvokeWithDelay(long delayTime, void (*callback)(void)) {
// Create a new thread for delayed queueing wavedata
std: :thread([=]{

using namespace std;
this_thread::sleep_for(chrono::milliseconds(delayTime));
callback();

}) .detach();

The change one may need to make to the C++ module is highlighted in yellow. Here is the
explanation:

1.

What to do: We need to wrap function declarations with extern "C" with brackets or in front of
each function declaration in both cpp and header files.

Reason: Since C++ has function overloading, without specifying extern "C", the compiler will
apply some small changes to function declarations and it will not be possible for C code to link
the C++ functions any more. Adding extern "C" will force the C++ compiler not to mangle the
function name so that the compiled C++ code can be linked with C code.

What to do: We also need to use #ifdef _ cplusplus and #endif to wrap extern "C".

Reason: This step is optional if you decide to port your module purely for C usage. However,
without the conditional check, the module written in C++ cannot be used by other C++ libraries
since it is expected for the compiler to mangle function declarations for C++ linkage. We would
want the same module to be shared by C and C++ modules, and hence, adding the conditional
check to apply extern “C” depending on whether the module is a C one or a C++ one.

Compile and Linking Modules in Makefile

C++ source code is supposed to be compiled by the program g++ while C source code is handled by
gcce. In a project using mixed and match C/C++ modules, compiling and linking with different flags can
be complicated.

1.

We need to download g++ compiler first depending on whether you have it already installed or
you want the cross tool version for ARM processors.

$ sudo apt install g++-arm-linux-gnueabihf (Cross tool version)

$ sudo apt install g++ (Host version)

Inside a Makefile, using wildcard command to filter out all files with extension .c and also
create a similar variable to filter out .cpp files.

C_FILES = $(wildcard *.c)

CPP_FILES = $(wildcard *.cpp)

Create pattern matching rules that will be applied to .c and .cpp files separately. The official
documentation explaining pattern rules is here.

$< here is an automatic variable provided by GNU Make referring to the dependencies on the
right hand side of the colon, and $@ is another automatic variable referring to the target of the
rule, left hand side of the colon.
Pattern to match cpp files and use g++ to compile
$(OBIDIR)/%.0: %.cpp

$(CC_CPP) $(CPPFLAGS) -c $< -0 $@

Pattern to match c files and use gcc to compile
$(0OBIDIR)/%.0: %.cC
$(CC_C) $(CFLAGS) -c $< -0 $@
Finally, you can make a rule which depends on all the object files, which will force GNU Make
to go through the previous 2 pattern rules first to generate object files.
C_0BJS = $(addprefix $(OBIDIR)/, $(C_FILES:.c=.0))
CPP_OBJS = $(addprefix $(OBIDIR)/, $(CPP_FILES:.cpp=.0))
compile: $(C_OBJS) $(CPP_OBIS)
$(LD) $” -o $(OUTDIR)/$(TARGET) $(LFLAGS)

C_O0BJS and CPP_OB3JS are constructed using C_FILES and CPP_FILES defined above by
replacing the extensions .c and . cpp to .o and also adding object folder path in the front. The
.0 object files generated will now go to obj/ folder. The compile rule will use linker (in this
case, g++) to link all object files to generate an executable. The automatic variable $* means
taking all dependencies on the right hand side of the colon.

https://www.gnu.org/software/make/manual/html_node/Pattern-Match.html#Pattern-Match

Attachment: The Complete Makefile
Makefile for building embedded application.

Edit this file to compile extra C files into their own programs.
TARGET= miku

OBJIDIR = obj
LIBDIR = libs
OUTDIR = $(HOME)/cmpt433/public/myApps

C_FILES = $(wildcard *.c)
C_0BJS = $(addprefix $(OBIDIR)/, $(C _FILES:.c=.0))

CPP_FILES = $(wildcard *.cpp)
CPP_OBJS = $(addprefix $(OBIDIR)/, $(CPP_FILES:.cpp=.0))

CROSS_TOOL = arm-linux-gnueabih+f-

Compiler
CC_CPP = $(CROSS_TOOL)g++
CC_C = $(CROSS_TOOL)gcc

Linker
LD = $(CROSS_TOOL)g++

CFLAGS = -Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror
CPPFLAGS = -Wall -g -std=c++11 -Werror

all: compile

compile: $(C_0BJS) $(CPP_O0OBIS)
$(LD) $~ -o $(OUTDIR)/$(TARGET)

Pattern to match cpp files and use g++ to compile
$(OBIDIR)/%.0: %.cpp
$(CC_CPP) $(CPPFLAGS) -c $< -0 %@

Pattern to match c files and use gcc to compile
$(0OBIDIR)/%.0: %.cC
$(CC_C) $(CFLAGS) -c $< -0 $@

clean:
rm -rf $(OBIDIR)
rm -f $(OUTDIR)/$(TARGET)

