USB -Keyboard Guide

by DeadPool2
Last update: August 2, 2018

This document guides the user through:
1: Figuring out how to detect the USB-Keyboard event.
2. Translate USB-Keyboard raw input (keycode) to ASCii

Table of Contents

1. Detect USB-Keyboard by EVENt.........ccei ettt st s
1.1 Checking dmesg content.........ooovviiiiiiiiiiiiiee e 2
1.2 EXploring /deV dir€CtOry.......cocuveeeieeciiee e 2
S ol o Vo I o T L =Y =] o O USRS

2. Translate raw input to ASCii
2.1 Understand data stream from keyboard........ccccccceeeiiii .
2.2 INTerPret 10 ASCii. uuu i e e

Formatting:

1. Host (desktop) commands starting with S are Linux console commands:
S echo "Hello world"

2. Target (board) commands start with #:
echo "On embedded board"

3. All commands are case sensitive.

1. Detect USB-Keyboard by event

When we connect USB-Keyboard to the host USB port on Beagle Bone, the output
of keyboard could only be seen on the monitor that is also connected to BB by
hub. Hence additional work needs to be done to get the output data stream from
the USB-Keyboard.

1.1 Checking dmesg content

Firstly, connect your keyboard to the host USB port. Then use dmesg command to
check the information about the usb device. You will find similar content as
following:

usb 1-1: new full-speed USB device number 3 using musb-hdrc

usb 1-1: New USB device found, idVendor=0483, idProduct=5017

usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1: Product: NANO75SIMPLE

usb 1-1: Manufacturer: CATEX TECH.

usb 1- SerialNumber: CA2015010003

input: CATEX TECH. NANO75SIMPLE as /devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1.au
to/usb1/1-1/1-1:1.0/0003:0483:5017.0004/input/input3
hid-generic 0003:0483:5017.0004: input,hidraw@: USB HID v1.10 Keyboard [CATEX TECH. NANO75SIMPLE]

on usb-musb-hdrc.1.auto-1/input0®

PM

PM

hid-generic 0003:0483:5017.0005: hiddevO,hidrawl: USB HID v1.00 Device [CATEX TECH. NANO75SIMPLE]
on usb-musb-hdrc.1.auto-1/inputl

PM

input: CATEX TECH. NANO75SIMPLE as /devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1.au
to/usb1/1-1/1-1:1.2/0003:0483:5017.0006/input/inputs

hid-generic 0003:0483:5017.0006: input,hidraw2: USB HID v1.10 Keyboard [CATEX TECH. NANO75SIMPLE]
on usb-musb-hdrc.1.auto-1/input2

We could find “USB HID v1.10 Keyboard” message in the dmesg, which tells us
that your usb keyboard has been detected and assigned to some input port.
Now we know that our USB Keyboard has been successfully connected to beagle
bone and let’s explore the way that linux handles usb input.

1.2 Exploring /dev directory

The /dev directory is the one in Linux that contains all the device files for all the
devices that are on your system. /dev/input is a sub directory that holds the
device files for various input devices such as mouse, keyboard, joystick and so on.
1. Is /dev/input

parallels@parallels-vm:~$ 1ls /dev/input/

by-path event® eventl event2 event3 mice mouse®
The output would be similar to the screenshot above. Each event is corresponding

to a device. Now we need to find out the specific event that is responsible for our
USB Keyboard.

1.3 Find out eventX
1. cat /proc/bus/input/devices

Bus=0003 Vendor=0483 Product=5017 Version=0110

Name="CATEX TECH. NANO75SIMPLE"

Phys=usb-musb-hdrc.1.auto-1/input2
: Sysfs=/devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1.auto/usb1/1-1/1-1:1.2/0003:0483:5017.0006/1
put/inputd

Uniq=CA2015010003

Handlers=sysrq kbd leds mouse® event2

PROP=0

EV=12001f

KEY=3007f @ @ 0 0 483ffff 17aff32d bf544446 0 0 70001 130c13 b17c000 267bfa d941dfed eObeffdf 1cfffff fffffff
fffffffe

REL=143

ABS=1 0

MSC=10

LED=1f

13
\'H
P:
Sa
n

u:
N
B:
B:
B:
f:

B:
B:
B:
B:

This command would display relevant information about all the input devices
connected to your system. Among the devices, you could find the “Handlers” for
your usb-keyboard by combining the information you obtained from dmesg and
“kbd” keyword. As shown on the screenshot above, my keyboard is event2.

2. cat /dev/input/event2

By executing this command and pressing the keyboard, you will find the
corresponding data stream is showing on the screen.

However, the data stream is not sensitive enough for each key pressed(at least
not sensitive in my case). And you might find multiple devices shown on the
“/proc/bus/input/devices” that has the same information, in which it is hard to
figure out which one is your usb keyboard. There are better places to look at.
3. Is /dev/input/by-path

Is /dev/input/by-id

root@qwa45sfu:~# 1ls /dev/input/by-path/

platform-44e0b000.12c-event platform-musb-hdrc.1.auto-usb-0:1:
platform-musb-hdrc.1.auto-usb-0:1:1.0-event-kbd platform-musb-hdrc.1.auto-usb-0:1:
root@qwa45sfu:~# 1ls /dev/input/by-id/
usb-CATEX_TECH._NANO75SIMPLE_CA2015010003-event-kbd
usb-CATEX_TECH._NANO75SIMPLE_CA2015010003-1f02-event-mouse
usb-CATEX_TECH._NANO75SIMPLE_CA2015010003-1f02-mouse

The output would be similar to the screenshot above. We could find that there
are specific event names for our usb-keyboard, which are ended with event-kbd.
This output is very clear and straightforward.

4. cat /dev/input/by-id/your-keyboard and pressing keys on your keyboard

root@qwad5sfu:~# cat /dev/input/by-1d/usb-CATEX_TECH._NANO75SIMPLE_CA2015010003-event-kbd

event-mouse
mouse

1.2-
1.2-

i _[oJBER

We could observe that each key will generate a corresponding data stream, which
is sensitive enough for us to capture.

2. Translate raw input to ASCii

Now we know how Linux handles the usb keyboard. But we still don’t know the
format of data stream we seen from the /dev/input and how to translate the raw
data into the human understanding characters.

2.1 Understand data stream from keyboard
1. vi /usr/include/linux/input.h

Copyright (c) 1999-2002 Vojtech Pavlik

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

ifndef _INPUT_H
define _INPUT_H

<sys/time.h>
<sys/ioctl.h>
<sys/types.h>
<linux/types.h>

* The event structure itself

*/

truct input_event {
struct timeval time;
__ulé type;
__ul6 code;
__s32 value;

Protocol version.

The format for the input strearh‘is-gi-ven in this file as input_event structure
shown in the above screenshot.
By using this structure, we could get the raw data from the keyboard.

2.2 Interpret to ASCii

The raw data we get from the keyboard each has a keycode. And each keycode is
mapped to each key on keyboard. The map could also be found in
Jusr/include/linux/input.h file.

»*

Keys and buttons

Most of the keys/buttons are modeled after USB HUT 1.12
(see http://www.usb.org/developers/hidpage).
Abbreviations in the comments:
AC - Application Control

Application Launch Button

System Control

* % % Ok ¥ ¥ F F

KEY_RESERVED
KEY_ESC
KEY_1
KEY_2
KEY_3
KEY_4
KEY_5
KEY_6
KEY_7
KEY_8
KEY_9
KEY_0
KEY_MINUS
KEY_EQUAL
KEY_BACKSPACE
KEY_TAB
KEY_Q
KEY_W
KEY_E
KEY_R
KEY_T
KEY_Y
A

We could use this map to make a table that translate the keycode to ASCii. The
following table completes most mappings.

VCO~NOTUVLTAWNEO

keycode[?
keycode[z
keycode[
[
[6
[7

(0 [N N

- O 0

v

keycode
keycode
keycode
keycode[8
keycode[9

~N OB WN
w N

oo

L1 I 1 1 1 1 Y | B |
(W]
0 N
~ ~ -
N = (

(g

keycode[16
keycode[1
keycode[12
keycode[12
keycode[14
keycode[1
keycode[16
keycode[17
keycode[18
keycode[19
keycode[20

~N OB WN = _)I—H—ll—ll—ll—ll—lul_l

e we Ve Ve Ve we W W

(U2 @)Y
(0]
I © JANe)

(0 o Tl @) WN SN &N

(O]

O nil
o

=
-

O 00 00

keycode[
keycode[
keycode[
keycode[

J_J_»J—LJ—J—LL,JLJLJ
AW NE O WO

~ ~

~

e \O OO

(0 I =N

¢ SN OSSN TSNITN N
rxAXGuUI o

. e

/LEFTSHIFT
; / /BACKSLASH

s/ /2

~ O U1

keycode[4¢
keycode[47
keycode[48]
keycode[49]
keycode[50]
keycode[51]
keycode[52]
keycode[53
keycode[54
keycode[
keycode[56
keycode[5
keycode[5¢

O

]
]
]
]
]
]
']
]
]
]
]
keycode[Zl]
keycode[22]
]
]
]
5]
27]
8]
29]
30]
31]
]
33]

34]
35]
36]
37]
38]
39]
0]
1]
]
3]
]
]
6]
]

O 0O 00 0O

keycode[23
keycode[24

2
—
sy
6

0 ~N

D C
e e e Sty B B i St S s e F g e e i S S S N S S S R
B T o L 0w B e L@« LN e)W W I O S I N By

A

N~ T OHC<—-20m

41;/
10; //ENTER
0;//LEFTCTRL
65;//A
83;//5
68;//D

70; //F

vJ[J}—‘L)\._)J

Troubleshooting:

1. You’d better connect your keyboard to usb port after beagle bone is completely
booted, otherwise it could lead to unrecognizable of your beagle bone to host pc.
2. If you find multiple devices with almost the same information after cat
/proc/bus/input/devices, you could follow the third step in 1.3 find out evenX.

3. If you are going to use input_event struct in your c code, please include
linux/input.h library.

4. If could not open the device in your code, please double check the file path to
your device is correct. The path should be look like following:

ffdefine DEVICE "/d

ev/input/by-

i1d/usb-CATEX_

