
How to UDP multicast to multiple device
By Chris Lee and Eric Liu

Table of Contents
1. Introduction

2. Link Setup for Linux

3. Server Programming in C

4. Client Programming in C

5. Troubleshooting

1. Introduction
Multicasting is the act of sending and forwarding a single packet to multiple hosts. This can

be very useful in situations where your application needs to send the same data to a lot of

different users, but don’t necessarily need to know any information about those users.

This guide explains how to multicast to a local network using C and socket programming.

1.1 Prerequisites

Multicasting requires that you have a router that supports IGMP (Internet Group

Management Protocol), as this enables a packet to be forwarded to multiple interfaces

connected to that router. Because there are a wide range of routers, we will not be

demonstrating how to configure IGMP on your router.

In most cases, it is probably safe for you to assume that your router is able to handle IGMP

packets.

1.2 Physical setup

There are two options for setting this up. The first option is to connect each Beaglebone to

the same router using an ethernet cable. This is a simple and straightforward approach, but

is limited by the number of ethernet slots on the router and the length of the ethernet

cable.

A second option is to use a USB WiFi adapter and connect to the same WiFi network. Note

that if the WiFi connection requires a password, it first needs to be configured on the

Beaglebone (out of the scope of this guide). It is also possible to mix and match wireless and

wired connections as long as all devices are connected to the same network.

To ensure that the devices are on the same network, navigate to your router’s settings page.

The Beaglebones should be listed in the router’s connections.

Finally, a minimal but functional approach would be to connect two Beaglebone devices

directly with an ethernet cable. This forms a local network with two devices and they can

send packets or multicast to each other.

2. Link Setup for Linux
On the device that will send the multicast packets, you may need to configure how that

device will route the packets that are being sent to the multicast address.

For the Beaglebone Green, after getting the networking set up, packets are usually

forwarded through the Ethernet-Over-USB connection. Instead, you want to make sure that

you are sending packets via the Ethernet connection.

1. ​Before starting, choose an IP address to use for multicasting. Typically, this is an

address between the range of 224.0.0.0 to 239.255.255.255.

● Do not choose 224.0.0.1, 224.0.0.2, or 224.0.0.22. The first two addresses are

used by IGMP to send packets to all hosts that support multicasting. In some

cases, your router may prevent packets on these addresses from being sent.

224.0.0.22 is used by IGMP to manage multicast group memberships.

2. Find out if the interface which represents the connection between your device and

the router will be handling the UDP packets being sent by your server. You can do

this by running the `​route​` command in your terminal.

$​ route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default idunno 0.0.0.0 UG 100 0 0 enp0s3

link-local * 255.255.0.0 U 1000 0 0 enx04a316eefc72

192.168.1.0 * 255.255.255.0 U 100 0 0 enp0s3

192.168.6.0 * 255.255.255.252 U 100 0 0 enx04a316eefc75

192.168.7.0 * 255.255.255.252 U 0 0 0 enx04a316eefc72

● If using the IP address 224.0.0.10 in the situation above, you can see that the

packet will be handled correctly. UDP multicast packets will be sent to the

“​enp0s3​”interface because none of the other “Genmasks” will match with the

224.0.0.10 address.

● On the Beaglebone Green with the default kernel, the interface you should

be looking for would typically be named “eth0” when you are using Ethernet,

or “wlan0” if you are using a WiFi dongle.

3. If your multicast packets are being sent to the incorrect interface, run the following

command to update the routing table. Make sure that you are running the command

with superuser permissions.

$​ ip route add 224.0.0.0/4 dev eth0

● You can replace “​eth0​” with the name of whichever interface you are using.

3. Server Programming in C
If you are familiar with UDP socket programming in C, the server should be simple to

implement because the process is exactly the same any other server in C.

1. Import the following header files into your networking module:

#include ​<sys/types.h>
#include ​<sys/socket.h>

#include ​<netinet/in.h>
#include ​<arpa/inet.h>

2. Create a socket file descriptor for sending UDP datagrams. Optionally, you can bind

this file descriptor to a port, but this isn’t necessary.

int​ sd = socket(AF_INET, SOCK_DGRAM, ​0​);

3. The file descriptor should now be ready to send UDP packets. This can be done using

the “​sendto​” function.

struct​ ​sockaddr_in​ ​addr​;
ssize_t​ res;
unsigned​ ​int​ addrlen;

memset​(&addr, ​0​, ​sizeof​(addr));
addr.sin_family = AF_INET;

addr.sin_port = htons(MULTICAST_PORT);

addr.sin_addr.s_addr = inet_addr(MULTICAST_ADDR);

addrlen = ​sizeof​(addr);

// (create message)

res = sendto(sd, message, message_size, ​0​,
 (struct sockaddr *) &addr, addrlen);

● Replace the “​MULTICAST_PORT​” macro with any available port number. This

should be an int. Make sure it matches with the port number that you are

going to bind to in your client program.

● Replace the “​MULTICAST_ADDR​” macro with the IP address you chose in step 1

of the previous section. This should be a string containing your IPv4 address.

● Replace the “​message​” variable with a buffer (​char​ *​) containing your

message and “​message_size​” with the size of your buffer in bytes (​unsigned
int​).

● The “​res​” variable isn’t entirely necessary, but it is recommended to do error

checking on it to ensure that your message is being sent correctly.

4. Client Programming in C

1. Follow steps 1 and 2 of the previous section to obtain a valid socket file descriptor.

2. Bind the file descriptor to your multicast port.

struct​ ​sockaddr_in​ ​addr​;
int​ res;

memset​(&addr, ​0​, ​sizeof​(addr));
addr.sin_family = AF_INET;

addr.sin_port = htons(MULTICAST_PORT);

addr.sin_addr.s_addr = htonl(INADDR_ANY);

res = bind(sd, (struct sockaddr *) &addr, ​sizeof​(addr));

3. Use “​setsockopt​” to designate the multicast address your application wants to listen

to. You must also specify which interface you want the multicasts to come from.

struct​ ​ip_mreq​ ​mreq​;
int​ res;

mreq.imr_multiaddr.s_addr = inet_addr(MULTICAST_ADDR);

mreq.imr_interface.s_addr = inet_addr(INTERFACE_ADDR);

res = setsockopt(sd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, ​sizeof​(mreq));

● As with before, replace “​MULTICAST_ADDR​” with a string representing your

chosen IPv4 multicast address.

● Replace “​INTERFACE_ADDR​” with the local address of the interface that is

connected to the router. To find this, run the `​ifconfig​` command on your

multicast receiver device and copy the value of “​inet addr​”.

#​ ifconfig
enp0s3 Link encap:Ethernet HWaddr 08:00:27:87:79:0d

 ​inet addr:192.168.1.103​ Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::dac6:da2:9c80:56c0/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:12874 errors:0 dropped:0 overruns:0 frame:0

 TX packets:3575 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3352789 (3.3 MB) TX bytes:422526 (422.5 KB)

4. You should now be able to receive multicasts using “​recvfrom​”.

ssize_t​ res;
unsigned​ ​int​ addrlen;

addrlen = ​sizeof​(addr);
res = recvfrom(sd, message, ​sizeof​(message), ​0​,
 (struct sockaddr *) &addr, &addrlen);

● “​message​” should be a pointer to a character buffer that you are going to use

to store the contents of the received multicast. The size of the buffer,

represented by “​sizeof​(message)​”, should typically be above 1500 bytes, as

most networks use that as the maximum packet size.

● You should do error checking with the “​res​” variable.

5. Troubleshooting
● On wireshark, if you are unable to see an IGMP packet being sent to your router by

your client application, it is likely that your “​mreq.imr_interface.s_addr​” variable is

assigned incorrectly. Make sure that it is not being set as “​htonl(INADDR_ANY)​”.

