
GPIO Interfacing and Device Tree Overlays on
Upgraded Beaglebone Image

Last updated August 2018, for CMPT433

Rationale:

When you re-flash your Beaglebone, it’s likely that you will flash a newer image than the
Beaglebone shipped with. In the CMPT433 Summer 2018 term, our Beaglebones shipped with
the 4.4.x kernel image. During the semester I re-flashed my Beaglebone to a 4.14.49-ti-r54
image for PRU work and found that the handling of GPIO and device tree overlays changed
significantly. This guide should help you to reconfigure your newly flashed Beaglebone so that
you can still work with the GPIO pins and load necessary device tree overlays.

Re-Flashing:

If you haven’t already re-flashed your Beaglebone, there are many ways to do so which won’t be
documented here. I used a USB cable flasher utility written by another student (Oscar S.) in our
CMPT433 class. You can find this utility at:
https://github.com/Jerald/cmpt433finalproject/blob/master/BeagleBone_USB_Flash_Guide.md.

We spoke with him directly about this flasher utility, and he recommended using it with a
physical Linux operating system for best results; apparently a virtual Linux operating system has
possible complications. It worked for us with a physical Linux operating system so for the
purposes of this guide, we recommend that method if you need to re-flash your board.

Device Trees:

On the 4.4.x kernel image, it is possible to use the following command to see which virtual capes
are loaded:

cat /sys/devices/platform/bone_capemgr/slots

On a newer 4.14.x kernel image, the loading of virtual capes happens at startup through uBoot.
To change which capes are loaded on startup, you’ll want to edit /boot/uEnv.txt on the
Beaglebone and disable some of the preloaded capes depending on which pins you want to free
up. Take a look at the P8 and P9 header schematics on http://beagleboard.org/support/bone101
to determine which overlays to disable:

For my purposes, I needed to free up at least 12 pins on the P8 header so that I could use them
to relay output from PRU1. I chose P8 pins [27-30] and [39-46] because those pins did not
conflict with the pins used for eMMC. eMMC is the onboard storage for the Beaglebone and
unless you are booting off a microSD you are probably using eMMC to store your operating
system, so don’t disable the eMMC uBoot overlay. The pins labelled LCD_XXXX are used by a
virtual video cape, and must be freed by disabling the video overlay virtual capes before they can
be used for other purposes like PRU1 output.

In your /boot/uEnv.txt file, change the following lines:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
#disable_uboot_overlay_video=1
#disable_uboot_overlay_audio=1
#disable_uboot_overlay_wireless=1
#disable_uboot_overlay_adc=1

To the following

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
disable_uboot_overlay_video=1
disable_uboot_overlay_audio=1

 Standard Beaglebone P8 Header P8 Header: Pins used by the PRU1 R30 (register) for GPIO
output

disable_uboot_overlay_wireless=1
disable_uboot_overlay_adc=1

Save the uEnv.txt file and reboot the board so uBoot can pick up the overlay changes.

You don’t have to disable the wireless and ADC overlay, but I knew I wasn’t going to be using
them so I disabled them for my purposes. If you need the wireless or ADC overlay, leave a # in
front of those lines to keep them enabled.

Configuring GPIO:

To use a GPIO pin in a mode other than the default (aka change the pinmux settings), a user on
the 4.4.x kernel had to load a custom device tree overlay. In the newer kernel versions, there
exists a utility called config-pin that allows a user to change the GPIO mode without modifying
a device tree overlay. Use config-pin with an -l flag to get available pin modes for a given GPIO.
In this example, I’ll be using P8_46 because I modified the mode of that pin for my work with
PRU1.

Using:

config-pin -l P8_46

returns possible modes for pin 46 on the P8 header:

default gpio gpio_pu gpio_pd pruout pruin pwm

I set P8_46 to pruout to enable it to receive PRU1 output like so:

config-pin P8_46 pruout

You can use the -i flag with config-pin to get more detailed information about the pin:

config-pin -i P8_46

Pin name: P8_46
Function if no cape loaded: hdmi
Function if cape loaded: default gpio gpio_pu gpio_pd pruout
pruin pwm
Function information: lcd_data1 default gpio2_7 gpio2_7 gpio2_7
pr1_pru1_pru_r30_1 pr1_pru1_pru_r31_1 ehrpwm2B
Cape: cape-universala cape-univ-hdmi
Kernel GPIO id: 71
PRU GPIO id: 103

