
Cross-compile Guide for Flite

Contents

Introduction 1

Install Flite application 1

Cross-compile Flite Library 2

Additional Resources 6

Introduction
CMU Flite (festival-lite) is a small, fast run-time open source text to speech
synthesis engine developed at CMU and primarily designed for small
embedded machines and/or large servers. Flite is designed as an alternative
text to speech synthesis engine to Festival for voices built using the FestVox
suite of voice building tools.
Since flite is a small and fast program, it is ideal to be embedded into
beaglebone and provide library API for custom C programs. However,
cross-compiling the library specially for beaglebone requires certain setups
beforehand and it is not provided by the developers. Therefore, this is a quick
setup guide that enable flite library functionalities on beaglebone and provide
easy access to flite API for custom programs.

Install Flite application
Flite functionalities can be first experienced by installable package ‘flite’. This
program uses flite library itself and is a good example of using API functions

1. Compile audio device tree and load audio cape
(see audio guide for more details)

1

2. Make sure target have internet connection by
ping google.ca

(see network guide for more details)

3. Install flite from apt-get
apt-get update

apt-get install flite

4. Run flite program with
flite -t “hello”

It should play the sound for ‘hello’.
echo ‘Hello, flite!’ > flite_test.txt

flite -f flite_test.txt

It should play the content of the specified file.

5. Trouble shooting
● Check network problems by

ping google.ca

if apt-get cannot install package or other network problems. Go over network
guide.

● When executing flite, if the error shows
oss_audio: failed to open audio device /dev/dsp

Go over audio guide and check if audio settings have completed

Cross-compile Flite Library
Flite header and library files with the correct format is required to write custom
code that uses its API. Therefore, the source of flite should be downloaded and
compiled on beaglebone with correct configurations to build the library files
needed.

1. Install alsa dev package

2

Alsa sound engine is used by flite and is required as development
environment. On target, install alsa dev tools:
apt-get install libasound2-dev

This is needed by flite source compiling.

2. Download flite source to target from github and configure
On target, type in the following commands:
cd

git clone http://github.com/festvox/flite

cd flite

./configure --with-audio=alsa --enable-shared

Wait for automatic configuration to be done. These specify the audio engine to
be alsa and compile shared library for later cross-compiling.

3. Build flite sourse
On target, in directory ~/flite:
make

The building process will take about 10 minutes to complete. This requires
about 100 MB space in beaglebone. If there’s not enough space, try remove
some unused packages.

4. Copy the include directory and shared libraries (.so files) to public file
On host, create directories in ~/cmpt433/public and make them accessible to
target:
$ cd ~/cmpt433/public/

$ mkdir flite_inc_BBB/

$ mkdir flite_lib_BBB/

$ chmod a+rwx flite_inc_BBB

$ chmod a+rwx flite_lib_BBB

After mounting NFS, on target:
cd ~/flite

cp include/* /mnt/remote/flite_inc_BBB/

cd build/armv7l-linux-gnueabihf/lib/

3

cp *.so /mnt/remote/flite_lib_BBB/

The shared library libasound.so is also needed for cross-compiling, and is
covered in audio guide.

5. C code example
The code and makefile example for cross-compiling is listed below. Copy each
of them to a local file on host for testing:

Code example:

// flite_cross.c

#include "flite.h"

cst_voice* ​register_cmu_us_rms​();

int​ ​main​(​int​ argc, ​char​ **argv)

{

 cst_voice *v;

 ​char​* str = ​"Hello, world!"​;

 flite_init();

 v = register_cmu_us_rms(​NULL​);

 flite_text_to_speech(str,v,​"play"​);

}

Makefile example:

Makefile

CROSS = arm-linux-gnueabihf-

CC = ​$(CROSS)​gcc

CFLAG = -Wall -g -std=c99 -Werror

PUBDIR = ​$(HOME)​/cmpt433/public/

LFLAGS = -L​$(PUBDIR)​asound_lib_BBB

-L​$(PUBDIR)​flite_lib_BBB \

-lflite_usenglish -lflite_cmulex -lflite

-lflite_cmu_us_rms -lm -lasound

IFLAGS = -I​$(PUBDIR)​flite_inc_BBB

4

OUTDIR = ​$(HOME)​/cmpt433/public/myApps/

all:

$(CC)​ ​$(CFLAG)​ -o flite_cross flite_cross.c

$(IFLAGS)​ ​$(LFLAGS)

cp flite_cross ​$(OUTDIR)

clean:

rm flite_cross ​$(OUTDIR)​flite_cross

There may be some extra line feed when copy-and-paste. Delete them if not
parsed well.

6. Make and run

In the directory containing the above code and makefile:
$ make

This should build the test to public folder. On target:
cd /mnt/remote/myApps

./flite_cross

Then the sound for ‘Hello, world!’ should be played out.

7. To change voices used for synthesis or acquire more controls over flite, go to
http://www.festvox.org/flite/doc/flite.html​ for documentation. The documentation
is not so updated, especially for beaglebone. If needed, refer to source code on
https://github.com/festvox/flite​. The source code for flite program locates in
flite/src/flite_main.c

8. Trouble shooting
● When building flite source on target, if error shows

fatal error: alsa/asoundlib.h: No such file or directory

This is because alsa dev tools are not installed. check the start of the session
and install the package.

5

http://www.festvox.org/flite/doc/flite.html
https://github.com/festvox/flite

● When cross compiling custom code, if ​-lasound ​cannot be found, check audio
guide to copy the shared library​ libasound.so​ to
~/cmpt433/public/asound_lib_BBB​ and recompile.

● When cross compiling custom code, if error shows
error adding symbols: File format not recognized

Check if shared library building is enabled in flite compilation with
--enable-shared ​and the shared library files (.so files, not .a files) are
correctly copied to public folder. Rebuild flite source if necessary.

● When cross compiling custom code, if error shows
./​flite_cross: error while loading shared libraries:
libflite.so.1: cannot open shared object file: No such file or

directory

The shared library path should be further specified on target:
export

LD_LIBRARY_PATH=/root/flite/build/armv7l-linux-gnueabihf/lib

Rerun the program after that.
● When running custom program, if error shows

oss_audio: failed to open audio device /dev/dsp

Check if flite source is compiled with ​--with-audio=alsa
Not using ALSA will default the sound engine to be OOS, on which no support
is loaded through this guide.

Additional Resources
● Networking Guide, by Brian Fraser

http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/Networking.pdf

● Audio Guide, by Brian Fraser
http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/AudioGuide.pdf

● Flite Main Page, by CMU LTI
http://www.festvox.org/flite/

6

http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/Networking.pdf
http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/AudioGuide.pdf
http://www.festvox.org/flite/

