
Adafruit's 16x32 LED Matrix Guide for BeagleBone Green
Written by: Scott Plummer

Introduction

This guide will focus on how to wire up the 16x32 LED matrix sold by Adafruit, create a basic
kernel driver to handle driving the matrix, and provide data collected about the boards flickering
issue. The first part of this guide is a summary of the set up information in the guide “Adafruit’s
16x32 LED Matrix Guide for BeagleBone” written by Janet Mardjuki with some additional
information to reflect the BBG board.

Wiring

Wiring can be done on either the zen cape or the BBG itself. The zen cape provides pass
through GPIO pins and as such if we use pins that are not used by other components the matrix
will work without needing to disable anything.

Figure 1

The ribbon wires and the LED matrix need to be wired up first. This link tells us that the ends on
the ribbon cables are flipped. Using this information and this table from the “Adafruit’s 16x32
LED Matrix Guide for BeagleBone” guide will allow us to properly wire up the ribbon cable with
the matrix.

G1 (Green) R1 (Red)

GND B1 (Blue)

G2 R2

GND B2

B A

D C

LAT CLK

GND OE

The D wire and potentially the OE wire are going to be unused, but still need to be wired for the
board to function.

We’ll be using pins 35-46, however, any non GPIO mapped pins can be used. You can find the
zen cape GPIO diagram here, any of the unlabelled pins are usable. Below is a table from the
“Adafruit’s 16x32 LED Matrix Guide for BeagleBone” guide for the mapping the GPIO pins to the

https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
https://learn.adafruit.com/32x16-32x32-rgb-led-matrix/connecting-with-jumper-wires
https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
http://www.cs.sfu.ca/CourseCentral/433/bfraser/solutions/zen/ZenSchematic.PDF
https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf

wires from the ribbon cable. It is important to note that both the D and OE wires are missing
from this table as they should be run to GND pins.

Top row of pins on
p8 header (even pin
numbers from 36-
44)

Bottom row of pins
on p8 header (odd
pin numbers from
35-45)

G1 [80] R1 [8]

G2 [79] B1 [78]

B [77] R2 [76]

LATCH [75] B2 [74]

CLK [73] A [72]

 C [70]

Figure 2

Highlighted in red is the P8 header pins which will be used to connect the wires from the ribbon
cable to the board. They should be wired in the order of the table starting from the left most pin
in the picture.

While wiring up the board there are 5 pins we want to ground: the three GND pins, the OE pin,
and the D pin (only used for 64x32 matrices). The OE pin must be grounded or used in
combination with a level shifter as the pin drives 7V to the board. Depending on which pin is
used for the OE wire, the board may not enter the correct boot sequence, or the voltage
regulator may be damaged. In the end the board with all the wires could look something like this

Figure 3

For a more in depth understanding of how to test and set up on the matrix please see this guide.

Flickering and ‘Pixel’ Bleed

One of the major issues with this LED matrix is the fact that the LEDs flicker when using a delay
that is to long (4.5ms+) when trying to loop through and drive values to the registers on the
board through GPIO. I’ll be discussing what we’ve found while trying to solve this issue.

In general, there are two problems that we’ve encountered with regards to getting a nice-looking
image displayed on the matrix. The first is the previously mentioned flickering, where when
providing a delay in the ledMatrix_refresh function that is too long causes the refresh rate of the
matrix to be visibly noticeable. The second issue is that if we reduce the delay (delay < 4ms) in
the ledMatrix_refresh function it causes the LEDs to bleed over into unexpected positions. In
this case trying to create a bar like image on the matrix caused multiple pixel to be activated
incorrectly.

Figure 4

Here is a table of the data we collected through testing. Hopefully it will provided insight into
how to improve or even remove the flickering/bleed-over problem in the future.

http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf

Table 1

Test Description Test Data Expected Output Actual Output

Enable all LED
‘pixels’ in column 0
with colour red

32x16 array with
all values in the
first position of
the arrays set to 1

All pixels in column 0
are enabled without
bleed over into other
columns/rows

All pixels in column 0
are enabled without
bleed over into other
columns/rows

Enable all LED
‘pixels’ in column 0
and rows 0-7 with
colour red

32x16 array with
all values in the
first 8 position of
the arrays set to 1

All pixels in column 0
and rows 0-7 are
coloured red

All pixels in column 0
and rows 0-7 are
coloured red

Enable 3 pixels in
column 0 rows [2-4]

32x16 array with
all values in rows
[2-3] and column
0 set to 1

All 3 pixels in column 0
rows [2-3] are coloured
red with no bleed over

Pixels bleed over into
position (0,0), (0, 1), no
bleed over in pixels
below row 4

From this we can conclude a few interesting pieces of information that may be useful to future
groups. The first is that LEDs only bleed over in their respective column, we don’t ever see
bleed over if all of LEDs are turned on in a column. The second is that LEDs do not bleed over
the middle point of the matrix. While we were unable to resolve the problem, hopefully this data
can be of use to future teams.

Kernel Driver

Attached with this guide is sample code for a simple misc kernel driver of the code provided
from and ported the from the “Adafruit’s 16x32 LED Matrix Guide for BeagleBone” guide into a
kernel driver. The main difference between the sample code provided from their guide and ours,
is that we implement a basic write function for interacting with the matrix code that can be
passed a 2d array of data and copy it over into a buffer in kernel space. Along with this we are
using the kernel GPIO interface, where more information can be found from this guide on how to
program the LEDs using the kernel GPIO interface.

Our attempt at using a misc kernel driver and implementing the write function to interface
between our application and the kernel proved to be slower than using just a user space
program. This was because of the amount of data we needed to copy over from our user
application to the driver. A more performant option would have been to implement the mmap
function and use that to pass our data between the kernel and our application.

Troubleshooting

1. If the board isn’t booting and the red LED on zen cape is on you’ve likely forgot to plug in
the LED matrix to its power supply. Unplug the BBG from power, plug in the LED matrix
into its power supply and turn on the BBG again.

2. If the board turns on but there’s no LED activity on the BBG and no information being
sent back from screen you’ve likely connected the OE pin to one of the GPIO pins
without using a level shift, or instead of grounding the pin. Power off the board and either

https://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf
http://derekmolloy.ie/kernel-gpio-programming-buttons-and-leds/

attach a level shifter to the OE pin or place the OE pin on one of the GRND pins labeled
above.

3. If the data size received by the driver code doesn’t match that of user space code you’ve
likely used fwrite instead of write. Fwrite can cause padding of the data written to the
driver. In this case, this shouldn’t cause any issues with the driver.

4. If the driver code is still too slow after implementing mmap you can try to run the matrix
through the PRU (not covered in this guide)

5. For any issues with LED ‘pixels’ lighting up, or having in correct placement see this
guide

http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/2015-student-howtos/Adafruit16x32LEDMatrixGuideForBBB.pdf

