Full Stack Web Framework with BBG

** This guide will be for mac/linux (All commands will be UNIX). Try Windows at your own risk.

Intro to Meteor
Why Meteor

Installation
Mac
Creating Your First Application

Communicate With BBG over UDP
Sending Data to Meteor Server
Receiving Data From Meteor Server

Troubleshooting

Intro to Meteor

Throughout the course of the semester you will most likely need to use some sort of website to
interact with your Beaglebone. This guide will show you the simplest way to achieve this

functionality.

Why Meteor

Meteor is a full stack framework that requires the use of only one language, javascript. For this
reason, it’s really easy to pick up for beginners. Meteor is also reactive which means that

whenever there’s a change in the server it’s reflected in the client right away.

Installation

Mac

1. Run the command:
> curl https://install.meteor.com/ | sh

That’s it! You now have meteor.

N

H w W

(6]

Creating Your First Application

1. Open your the desired folder you want to create your app in
2. Run the command:

> meteor create test-app

3. You now have a meteor application. To see how it looks let’s run it in localhost with the

command

> cd test-app

> meteor

4. This will start you server at localhost:3000 by default. To change it to your own

custom port run the command
> meteor run --port <your_port>
Here is an example to start your website at port 8080

> meteor run --port 8080

Communicate With BBG over UDP

Sending Data to Meteor Server

TEST-APP

1. Assuming that you are starting in the
.meteor

directory of the test-app we created in the - [ianit
previous step, go ahead and change node modiues

directories to the server and make a new file
server

called udpListener.js miaknjs

> cd server udpListener.js

.gitignore

> mkdir udpListener.js } package-lock.json

|} package.json

2. InudpListener.js we need to define an
ip address, a port, and the protocol we want to use. This can be achieved by placing the
following code into your udpListener
Meteor.startup(() => {
var PORT = 12345
var HOST = '127.0.0.1";
var dgram = require('dgram');

var server = dgram.createSocket('udp4');

server.on('listening', function () {
var address = server.address();
console.log('UDP Server listening on ' + address.address + ":" +

address.port);

1)

server.on('message', function (message, remote) {

console.log(remote.address + + remote.port +' - ' + message);

1)

server.bind(PORT, HOST);

1)

Notice that the server will be listening on port 12345 at ip 127.0.0.1

3. Test to see if this works with netcat

> nc -u 127.0.0.1 12345

> Hello World from netcat

Here is what it should look like on netcat and on the meteor server terminal:

Meteor Server:

=+ meteor

[[[[[~/Desktop/meteor/test—-app 111]]

=> Started proxy.

== Started MongoDB.
20171204-16:46: 3 UDP Server listening on 127.6.8.1:12345

=> Started your app.

=> App running at: http://localhost:3008/
120171204-16:41:0 I 127.08.0.1:57151 - Hello World from netcat

nc —u 127.8.08.1 12345

Hello World from netcat

[

Receiving Data From Meteor Server

1. To make your meteor server send data you will need to define a new HOST and PORT.
This will be the HOST and PORT your beaglebone will use so make sure it matches your
beaglebone’s C code. In my case | will use 192.168.2.2 at port 8080. You will also need to

create a new socket. Just add these to the top of the meteor.create method

8080

var BBG_PORT

var BBG_HOST

'192.168.2.2";

var bbg = dgram.createSocket('udp4');

2. Now, to send data you will need to use the method

bbg.send(message,0,message.length,BBG_PORT,BBG_HOST, function(err,bytes){

if(err) throw err;

1)

Your file should now look like:

Meteor.s

r HOST =

tartup(() == {
PORT = 12345
BBG_PORT = 8@8@
27.0.0

BBG_HOST = *

- dgram = reguire('dgram'};

s5erv

};

5erv

H;

S58rv

server = dgram.createSocket('udp4');
bbg = dgram.createSocket('udpd');

(14

er.on('listening', functiol
va server.address();

address =

console. log('UDP S

er.on('me u on (message, remote) {

console. log(remote.address +

bbg.send{message, @, message. length, BBG_PORT, BBG_HOST,
if(err) throw err

¥

er.bind(PORT, HOST);

Troubleshooting

r listening on ' + address.address + "

'+' + remote.port +' - '

:" + address.port);

+ message);

fu n{err,bytes){

1. If you are having trouble installing meteor, refer to the official documentation here:

https:/

/www.meteor.com/install

2. Ifyou are having issues starting the udp server make sure that you have the proper ip

address and port. Run > ifconfig to see yourip.

3. If your beaglebone is not receiving messages from the meteor server then make sure that

you have set up the correct host and port number on both the beaglebone ¢ program and

the udpListener.js

install

> rm -rf node_modules/ && npm install && meteor reset

them again.

If your meteor project won’t start you might have to delete the node_modules folder and

https://www.meteor.com/install

