
GPIO Control using the BeagleBone Green PRU with

Remoteproc
By Eric Yang, Karen Li, Joanne Yoon, Hye Lim Moon

V 1.0 Last updated: December 2016

This document guides the user through:

1. Loading firmware and starting the PRU

2. Controlling GPIO pins via the PRU

3. Writing a DTO for configuring pin modes

Table of Contents

1 Programmable Real-Time Units .. 2

2 Building a Sample Project ... 2

2.1 Setting Up the Development Environment .. 2

2.2 Troubleshooting: .. 3

3 Starting the PRU .. 4

3.1 Copy Compiled Firmware to /lib/firmware/... 4

3.2 Load firmware .. 4

3.3 Troubleshooting ... 5

4 GPIO Toggle with the PRU ... 6

4.1 Troubleshooting ... 7

5 Device Tree .. 7

5.1 How to find values for the .dts file ... 7

5.2 Build and Load the DTO .. 9

6 Helpful Links / References: ... 9

1 Programmable Real-Time Units

The BeagleBone Green contains 2 Programmable Real-time Units (PRU) that are accessible for you to

use. Each of these 32-bit 200MHz processors provide single-cycle I/O access to several pins and full

access to the internal memory on the AM335x processor, allowing you to run code independently from

your main BeagleBone Green CPU. They are designed for perform tasks that have extremely strict timing

requirements.

In older kernels, Linux provides an uio_pruss driver for loading firmware written onto the PRU. Newer

linux kernels (v4.1.xx) no longer have this, and instead use the Remote Processor (Remoteproc)

framework to interact with peripheral devices. TI’s pru_rproc driver uses this new framework to allow

programs to be loaded onto the PRU. For communication between the PRU and Linux kernel, TI provides

the rpmsg module. The following guide will walk through running a C program controlling GPIO pins on

the PRU.

2 Building a Sample Project

TI has provided example projects to show you how to use the PRU which are located on your BeagleBone

at:
/opt/source/pru-software-support-package/examples/am335x

Alternatively, the sample code can also be found here: https://github.com/dinuxbg/pru-software-support-

package/tree/master/examples/am335x

2.1 Setting Up the Development Environment

Before we can build a PRU project we need to setup our development environment on our BeagleBone

Green.The Makefiles for the examples require an environment variable called PRU_CGT to be set and

pointing at TI’s PRU code generation tools. This environment variable must be set or your build will fail.

1. Check to see if you have the PRU compiler installed on your Beaglebone:

whereis clpru

This should show you where the PRU compiler is. The output should look like the following:

clpru: /usr/bin/clpru /usr/share/man/man1/clpru.1

2. Create a symbolic link to the compiler

cd /usr/share/ti/cgt-pru
mkdir bin
cd bin
ln -s /usr/bin/clpru clpru

3. We now have successfully linked our PRU compiler. To test it out you can use the following

command:
/usr/share/ti/cgt-pru/bin/clpru

Alternatively you could link your entire /usr/bin directory to /usr/share/ti/cgt-

pru/bin which can be done by the following command:
ln -s /usr/bin/ /usr/share/ti/cgt-pru/bin

http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
http://processors.wiki.ti.com/index.php/RPMsg_Quick_Start_Guide
https://github.com/dinuxbg/pru-software-support-package/tree/master/examples/am335x
https://github.com/dinuxbg/pru-software-support-package/tree/master/examples/am335x

4. Next, we will create the environment variable needed using export
export PRU_CGT=/usr/share/ti/cgt-pru

5. You only need to create the link once but the environment variable must be set each time you want to

build the project. For convenience, you should set the environment variable in ~/.profile.

6. Select an example project to build and run make. After compilation, the output files will be located

inside the gen/ folder.

2.2 Troubleshooting:

1. I could not find /opt/source/pru-software-support-package/examples/am335x

If you are unable to find this on your system then you can simply download it directly from Ti's git

repo (https://git.ti.com/pru-software-support-package/).

2. whereis clpru did not find anything

If you are unable to find the compiler already installed on your Beaglebone then you can download it

from Ti directly (http://software-dl.ti.com/codegen/non-esd/downloads/download.htm#PRU). Once

you downloaded it, install it on your machine and link the compiler to where you installed it.

3. I get the following error when building the project

PRU_CGT environment variable is not set. Examples given:
(Desktop Linux) export PRU_CGT=/path/to/pru/code/gen/tools/ti-cgt-pru_2.1.2
(Windows) set PRU_CGT=C:/path/to/pru/code/gen/tools/ti-cgt-pru_2.1.2
(ARM Linux*) export PRU_CGT=/usr/share/ti/cgt-pru
*ARM Linux also needs to create a symbolic link to the /usr/bin/ directory

in order to use the same Makefile
(ARM Linux) ln -s /usr/bin/ /usr/share/ti/cgt-pru/bin

. Stop.

As it says, you have not set your PRU_CGT environment variable. Set the PRU_CGT environment

variable using the following command and try to build again.
export PRU_CGT=/usr/share/ti/cgt-pru

4. I get an error when making the project that looks like the following:

Building file: main.c
Invoking: PRU Compiler
/usr/share/ti/cgt-pru/bin/clpru --include_path=/usr/share/ti/cgt-pru/include

--include_path=../../../include --include_path=../../../include/am335x -v3 -

O2 --display_error_number --endian=little --hardware_mac=on --

obj_directory=gen --pp_directory=gen -ppd -ppa -fe gen/main.object main.c
make: /usr/share/ti/cgt-pru/bin/clpru: Command not found
Makefile:88: recipe for target 'gen/main.object' failed
make: *** [gen/main.object] Error 127

https://git.ti.com/pru-software-support-package/
https://git.ti.com/pru-software-support-package/
http://software-dl.ti.com/codegen/non-esd/downloads/download.htm#PRU

The error is caused by the makefile not being able to find the PRU compiler. Verify that you linked

the PRU compiler to be in /usr/share/ti/cgt-pru/bin/clpru and that the PRU_CGT

environment variable is set correctly to point to /usr/share/ti/cgt-pru.

3 Starting the PRU

To start the PRU, firmware compiled in the previous step needs to be loaded onto the PRU using the

pru_rproc module. This module looks for the firmware for the corresponding PRU core inside the

/lib/firmware/ folder. To load firmware into PRU0, /lib/firmware/ must contain a file named

am335x-pru0-fw, and for PRU1, a file named am335x-pru1-fw. These steps will use TI’s

PRU_RPMsg_Echo_Interrupt1 example to demonstrate how to work with both the pru_rproc and

rpmsg modules. Follow the steps in the previous section to build the firmware first.

3.1 Copy Compiled Firmware to /lib/firmware/

1. Inside the gen/ folder compiled from the last section, locate the .out file. This is the firmware

built by the compiler to run on the PRU. Copy this file to the /lib/firmware/ folder as the

firmware file for the desired PRU:

cp PRU_RPMsg_Echo_Interrupt1.out /lib/firmware/am335x-pru1-fw

3.2 Load firmware

Once the binary file has been copied correctly to /lib/firmware/, restart the PRU drivers to load the

firmware.

1. Stop the rproc driver:

rmmod -f pru_rproc

2. If using the rpmsg module (such as in the PRU_RPMsg_Echo_Interrupt1 example), all of

these modules must be stopped:
rmmod -f rpmsg_pru
rmmod -f virtio_rpmsg_bus
rmmod -f pru_rproc

3. Restart the rproc driver:
modprobe pru_rproc

4. Check dmesg | tail -n 30 to see if the firmware was loaded correctly. The output should be

similar to this:

root@cla233-beagle:~# dmesg | tail -n 30
[18432.652499] Disabling lock debugging due to kernel taint
[18440.103452] pruss-rproc 4a300000.pruss: unconfigured system_events =

0x0800000000000000 host_intr = 0x00000002
[18440.103479] remoteproc1: stopped remote processor 4a338000.pru1
[18445.445481] pru-rproc 4a338000.pru1: pru_rproc_remove: removing rproc

4a338000.pru1
[18445.449590] remoteproc1: releasing 4a338000.pru1
[18453.402376] remoteproc1: 4a334000.pru0 is available
[18453.402401] remoteproc1: Note: remoteproc is still under development and

considered experimental.
[18453.402410] remoteproc1: THE BINARY FORMAT IS NOT YET FINALIZED, and

backward compatibility isn't yet guaranteed.
[18453.402599] remoteproc1: Direct firmware load for am335x-pru0-fw failed

with error -2
[18453.402616] remoteproc1: failed to load am335x-pru0-fw
[18453.407926] pru-rproc 4a334000.pru0: booting the PRU core manually
[18453.407938] remoteproc1: powering up 4a334000.pru0
[18453.407976] remoteproc1: Direct firmware load for am335x-pru0-fw failed

with error -2
[18453.407987] remoteproc1: request_firmware failed: -2
[18453.413189] pru-rproc 4a334000.pru0: rproc_boot failed
[18453.421701] remoteproc1: releasing 4a334000.pru0
[18453.421848] pru-rproc: probe of 4a334000.pru0 failed with error -2
[18453.422202] remoteproc1: 4a338000.pru1 is available
[18453.422215] remoteproc1: Note: remoteproc is still under development and

considered experimental.
[18453.422224] remoteproc1: THE BINARY FORMAT IS NOT YET FINALIZED, and

backward compatibility isn't yet guaranteed.
[18453.423468] remoteproc1: registered virtio0 (type 7)
[18453.423631] pru-rproc 4a338000.pru1: PRU rproc node

/ocp/pruss@4a300000/pru1@4a338000 probed successfully
[18453.463601] remoteproc1: powering up 4a338000.pru1
[18453.464479] remoteproc1: Booting fw image am335x-pru1-fw, size 186964
[18453.464680] pruss-rproc 4a300000.pruss: configured system_events =

0x0800000000000000 intr_channels = 0x00000002 host_intr = 0x00000002
[18453.464693] remoteproc1: remote processor 4a338000.pru1 is now up
[18453.465274] virtio_rpmsg_bus virtio0: rpmsg host is online
[18453.465329] virtio_rpmsg_bus virtio0: creating channel rpmsg-pru addr

0x1f
[18453.484321] rpmsg_pru rpmsg0: new rpmsg_pru device: /dev/rpmsg_pru31

Note: pru_rproc attempts to load both PRU0 and PRU1 at the same time. If one or both of am335x-

pru0-fw and am335x-pru1-fw does not exist, pru_rproc will fail when loading to the

corresponding PRU.

5. You now have firmware running on the PRU! To send a message to the PRU, run:
echo “test” > /dev/rpmsg_pru31

3.3 Troubleshooting

1. I get the following error when removing the virtio_rpmsg_bus module

root@cla233-beagle:~# rmmod virtio_rpmsg_bus
rmmod: ERROR: Module virtio_rpmsg_bus is in use by: rpmsg_pru
root@cla233-beagle:~# rmmod -f virtio_rpmsg_bus
rmmod: ERROR: ../libkmod/libkmod-module.c:777 kmod_module_remove_module()

could not remove 'virtio_rpmsg_bus': Resource temporarily unavailable
rmmod: ERROR: could not remove module virtio_rpmsg_bus: Resource temporarily

unavailable

This module is used by the rpmsg_pru module. To remove it, make sure to remove rpmsg_pru

first.

2. I get loading failure in dmesg after starting pru_rproc

[18453.402599] remoteproc1: Direct firmware load for am335x-pru0-fw failed

with error -2
[18453.402616] remoteproc1: failed to load am335x-pru0-fw
[18453.407926] pru-rproc 4a334000.pru0: booting the PRU core manually
[18453.407938] remoteproc1: powering up 4a334000.pru0
[18453.407976] remoteproc1: Direct firmware load for am335x-pru0-fw failed

with error -2
[18453.407987] remoteproc1: request_firmware failed: -2
[18453.413189] pru-rproc 4a334000.pru0: rproc_boot failed
[18453.421701] remoteproc1: releasing 4a334000.pru0
[18453.421848] pru-rproc: probe of 4a334000.pru0 failed with error -2

This error is most likely due to pru_rproc not being able to locate the firmware files. Check that you

have the correctly named files in /lib/firmware:
ls /lib/firmware/am335x-pru*

/lib/firmware/am335x-pru0-fw
/lib/firmware/am335x-pru1-fw

4 GPIO Toggle with the PRU

Refer to TI’s PRU_gpioToggle example for a simple program on toggling a GPIO pin. Follow these

steps to change TI’s toggle GPIO example to toggle a specific pin on the BeagleBone.

1. Notice that the PRU_gpioToggle.c contains two register variables, __R30 and __R31. __R30

is for PRU output, and __R31 is for input. We will use __R30 for driving the GPIO pin high or low.

2. Chose a pin on the BeagleBone that can be accessed by the PRU

o Refer to the P8 and P9 Headers documents (These documents are for BeagleBone Black, but the

pins on the BeagleBone Green is the same). Chose a pin that has pru_r30 in one of its pinmux.

This guide will use P8_27.

o Mode 5 of P8_27 says pr1_pru1_pru_r30_8. This means that P8_27 can be used as GPIO

output (r30) by PRU1 (pru1). Note that PRU0 will not be able to toggle P8_27.

o The 8 at the end represents the bit (offset) in the register __R30 that corresponds to this pin.

3. Inside PRU_gpioToggle.c, change this line of code:
gpio = 0x000F;

to:
gpio = 0x0100;

This sets the 8th bit of the register (as found in the previous step) which controls P8_27. Setting this

bit to 1 will drive the pin high and 0 will drive the pin low

4. Save the file and run make

5. Follow the steps in the previous section to load this firmware

6. Configure P8_27 to be in the pruout mode

http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.png
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP9Header.png

o Enable the universal cape in order to have access to the pinmux (Make a copy of

/boot/uEnv.txt first!)

nano /boot/uEnv.txt

o Change this line:
cmdline=coherent_pool=1M quiet cape_universal=disabled

to:
cmdline=coherent_pool=1M quiet cape_universal=enabled

o Reboot

o Change the pin mode
config-pin P8_27 pruout

7. Use a voltmeter/oscilloscope to see the GPIO pin (P8_27) being driven high (1) and low (0) about

every 0.05 seconds.

o __delay_cycles(100000000) on the BBG’s PRU processor is about 0.05 seconds

8. To allow the PRU to receive commands from Linux userspace, try incorporating the

PRU_gpioToggle example into the PRU_RPMsg_Echo_Interrupt1 example.

4.1 Troubleshooting

1. I cannot set the pin mode

root@beagle:~# config-pin P8_27 pruout
P8_27 pinmux file not found!
cape-universala overlay not found
run "config-pin overlay cape-universala" to load the cape

Make sure that the universal cape is enabled in /boot/uEnv.txt

2. I have a corrupt /boot/uEnv.txt file!
Follow the steps in section 5 of the Audio Guide to recover

5 Device Tree

We can create a device tree overlay to configure the GPIO pin for mode 5 (pruout) with the universal

cape disabled. This allows us to easily load or unload the cape using C, and for other custom capes which

may conflict with the universal cape to be loaded.

5.1 How to find values for the .dts file

1. From P8 Headers, we see that the address (ADDR column) of P8_27 is 0x0E0

2. With universal cape enabled, run the following to find out the hex value for the pruout mode (mode

5 from P8 Headers)
config-pin P8_27 pruout
cat /sys/kernel/debug/pinctrl/44e10800.pinmux/pins | grep 56

This should give this:
pin 56 (44e108e0.0) 00000005 pinctrl-single

http://www.cs.sfu.ca/CourseCentral/433/bfraser/other/AudioGuide.pdf
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.png
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.png

Note: 56 is in the $PINS column for P8_27 from P8 Headers, meaning P8_27 is pin 56 in the

/sys/kernel/debug/pinctrl/44e10800.pinmux/pins file

3. From the result of the cat, we see that the hex value of the pin is 0x05 (00000005) when in pruout

mode

4. Thus, with the 0x0E0 from step 2, and 0x05 from step 3, we write the following in the pin

configuration section of the .dts file:

pinctrl-single,pins = <
 0x0E0 0x05 // P8_27: Mode 5
>;

Here is a full example (test.dts) configuring P8_27 for pruout mode:

/* Adapted from http://stackoverflow.com/questions/16872763/configuring-

pins-mode-beaglebone/17064969 */

/dts-v1/;
/plugin/;

/ {
 compatible = "ti,beaglebone", "ti,beaglebone-black";
 part-number = "test";
 version = "00A0";

 fragment@0 {
 target = <&am33xx_pinmux>;
 __overlay__ {
 test_pins: pinmux_test_pins {
 pinctrl-single,pins = <
 0x0E0 0x05 // P8_27: Mode 5
 >;
 };
 };
 };
 fragment@1 {
 target = <&ocp>;
 __overlay__ {
 test_pinmux {
 compatible = "bone-pinmux-helper";
 status = "okay";
 pinctrl-names = "default";
 pinctrl-0 = <&test_pins>;
 };
 };
 };
};

http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.png

5.2 Build and Load the DTO

1. Disable the universal cape and reboot

2. Copy test.dts to the ~/ directory on the Beaglebone

3. Build the .dtbo file
cd ~/
dtc -O dtb -o TEST-00A0.dtbo -b 0 -@ test.dts

4. Copy the TEST-00A0.dtbo file to /lib/firmware
cp TEST-00A0.dtbo /lib/firmware

5. Load the device tree overlay
echo TEST > $SLOTS

6. To load automatically on startup, add to the cape manager:
nano /etc/default/capemgr

Add CAPE=TEST to the end of the file

6 Helpful Links / References:

 Beaglebone: remoteproc “Hello, world!” http://theduchy.ualr.edu/?p=996

 Ti Documenation on PRUs http://processors.wiki.ti.com/index.php/PRU-ICSS

 Remoteproc and RPMsg Documentation http://processors.wiki.ti.com/index.php/PRU-

ICSS_Remoteproc_and_RPMsg

http://theduchy.ualr.edu/?p=996
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg

