Grove 4-digit display guide

Contents

Y 4o Yo [8 Lot o s IR

S = U] T [= LS
S (0] 0 IR o = |
DIALA WITE...c.etiei ettt b e s bbbt e b et b e b e bt e n e s ae e r e
Controlling the 4-digit AISPIAY.......c.eeeirrieiiiiecee et e et e e e e s re e e sbeeesnreeennns

QLI (18] 0] 1= o o 11 T RSP

Introduction

This guide will provide a walkthrough for using the Grove 4-digit display* with the BeagleBone
Green. The Grove system uses a standardized 4 pin connector to simplify the use of some
hardware?. This guide will require that you already have some knowledge and libraries to work
with GPIO using C (Go through Brian Fraser's GPIO guide).

The 4-digit display does not follow any standard protocols so we will be bit-banging® through the
Grove UART port to control the display. We will use two pins, one for the clock and the other for
the data.

4-digit display basics

Before we begin, we will take a look at the 4-digit display and figure out what we need to do to
use it. The display that the Grove module uses is the TM1637. The guide will refer to the
TM1637 Datasheet for information. It is recommended that you take some time now to look over
the datasheet.

For this guide, we will use the auto increment mode as shown on page 4 of the datasheet.
These are the basic steps:

1. Send start signal

2. Send command for automatic address incrementing
3. Send stop signal

4. Send start signal

5. Send the starting address

6. Send the data for the digits

7. Send stop signal

8. Send start signal

9. Send display data

10. Send stop signal

Note

Data should only be sent when the clock signal is low*. The pulse width of the clock should
also be at least 400ns®.

L http://wiki.seeed.cc/Grove-4-Digit_Display/

2 http://www.seeedstudio.com/blog/2016/03/09/tutorial-intro-to-grove-connectors-for-arduinoraspberry-pi-
projects/

3 https://en.wikipedia.org/wiki/Bit_banging

% Interface Interpretation - p. 2 TM1637 datasheet

5 Timing character — p.10 TM1637 datasheet

http://olimex.cl/website_MCI/static/documents/Datasheet_TM1637.pdf

GPIO setup

On the Grove 4-digit display, we can see that we will need to control the CLK and DIO lines.
Since we are using the Grove UART port, these map to RX and TX pins respectively. The
Grove UART connector on the BeagleBone is connected to UART2. Looking at the BeagleBone
GPIO reference®, RX mapsto P9 22 (GPIO 2) and TX goes to P9_21 (GPIO 3). Make sure that
the pins are not set for PWM and remove the jumper from the connection by the buzzer on the
Zen cape (plastic piece below the buzzer).

= umper
Connections |

6 http://wiki.seeed.cc/BeagleBone_Green/

To get started, export GPIO pins 2 and 3 for output either through Linux or using C.

Note
The guide will refer to GPIO pin 2 as CLK and pin 3 as DIO to match with the data sheet.

Code snippets
The guide assumes you have a way to control GPIO pins in C. The code shippets will be

using the functions setClk() and setDio() to set the values of pin 2 and pin 3. The function
wait1() will sleep for 400ns. setDirection() sets the GPIO direction and getValue() reads the
value of the pin

C Code

Start signal
From the datasheet’, to send the start signal, CLK will have to be high then DIO will be changed

from high to low.

C

static void tm_start(void)

{

/*
* When CLK is high, and DIO goes from high to low, input begins
*/

setClk(HIGH);

setDio(HIGH);

waitl();

setDio(LOW);
waitl();

setClk(LOW);
waitl();

7 Page 3 of TM1637 datasheet

Waveform

CLK

DIO

Stop signal
To send the stop signal, CLK will be high, and DIO will change from low to high

C

static void tm_stop(void)
{
/*
* When CLK is high, and DIO goes from low to high, input ends
*/
setClk(LOW);
setDio(LOW);
waitl();

setClk(HIGH);
waitl();

setDio(HIGH);
waitl();

Waveform

CLK

DIO

Data write

To send data to the 4-digit display, the bits are sent from lower order to higher order®. After a
byte is sent, the 4-digit display will send an ACK on the falling edge of the 8" clock cycle and
last until the falling edge of the 9" clock cycle.

C

static void tm_write(char data) {
/*
*Send each bit of data
*/
for(int 1 = 0; i < 8; i++) {
//transfer data when clock is low, from low bit to high bit
setClk(LOW);
setDio(data & 9x01);
data »>>= 1;
waitl();

setClk(HIGH);
waitl();

}

/*
* End of 8th clock cycle is the start of ACK from TM1637
*/

setClk(LOW);

setDirection(DIO, IN);

waitl();

//Check that we are getting the ACK from the device

assert(getValue(DIO) == 0);

setClk(HIGH);
waitl();
setClk(LOW);
setDirection(DIO, OUT);
}
Waveform Data ACK

CLK

X8 8™ clock end of 9" clock
DIO

Data

8 Page 3 of TM1637 datasheet

Controlling the 4-digit display
Now we have the basic functions that we need to control the 4-digit display.

First we start by writing 0x40 which is the command to use auto address incrementing®. This
means we can just write 4 bytes of data for the digits.

C

#define CMD_AUTO_ADDR ©x40

tm_start();
tm_write(CMD_AUTO_ADDR);
tm_stop();

Next we have to write the starting address, followed by the data for the digits. We will write all
four digits at once so our starting address is 0xC0'°. We also need to get the value to display a
digit. Here is the table of digits and their corresponding values'!. To show to colon separator we
bitwise or the value of the digit with 0x80.

A

mul J

Digit Value

Ox3f

0x06

Ox5b

Ox4f

0x66

Ox6d

Oox7d

0x07

ox7f

RROR|RIRIRRFROIOO
R|R|O|R|kR|kR|O|O|OR|M
O|r|O|r|O|Oo|O|r|Or|m
O|r|O|kR|kR|O|kR|r|O|r|T
RlR|R|IR|IRIRIFROIRIRIO
R |R|O|O|R|R|IR|IR IR T
RRPRPIRPRP ORI Ok

OO (N WINFO
O|O|0O|Oo|Oo|o|o|o|o|o|XT

0x67

° Data command setting — p.4 of TM1637 datasheet
10 Address command setting — p.5 of TM1637 datasheet
11 Display register address — p.2 and Hardware connection drawing — p.8

C

#define CMD_AUTO_ADDR 0x40
#define START_ADDR OxcO
#tdefine NUM_DIGITS 4

#tdefine COLON_FLAG 0©x80
#idefine ASCII 0 48
#define ASCII 9 57
const static char displayDigits[10] = {

ox3f,

0x06,

ox5b,

oxaf,

0x66,

ox6d,

ox7d,

0x07,

ox7f,

ox67,

}s

static char convertChar(char ch, _Bool colon) {
char val = 0;
if ((ASCII_© <= ch) && (ch <= ASCII 9)) {
val = displayDigits[ch - ASCII_©];
}

if (colon) {
return val | COLON_FLAG;
}

return val;

}

void fourDigit_display(char* digits, _Bool colonOn) {
assert(strlen(digits) == NUM_DIGITS);

tm_start();
tm_write(CMD_AUTO_ADDR);
tm_stop();

tm_start();

tm_write(START_ADDR);

for (int 1 = 0; i < NUM DIGITS; i++) {
tm_write(convertChar(digits[i], colonOn));

}

tm_stop();

Next, we need to set the brightness of the display. To do this we will write 0x88? which turns on
the display and bitwise or it with the brightness setting from 0 — 7.

C

void fourDigit_display(char* digits, _Bool colonOn) {
assert(strlen(digits) == NUM_DIGITS);

tm_start();
tm_write(CMD_AUTO_ADDR);
tm_stop();

tm_start();

tm_write(START_ADDR);

for (int i = ©; i < NUM_DIGITS; i++) {
tm_write(convertChar(digits[i], colonOn));

}
tm_stop();

tm_start();

//This sets it to the brightest
tm_write(DISPLAY_ON | ©x@7);
tm_stop();

Troubleshooting

e No ACK received from the 4-digit display (the assert fails)
Ensure that the jumper by the buzzer is removed. Also check that the GPIO pins are
configured correctly for output and that it can also be properly switched to input.

¢ Nothing appears on the 4-digit display
Make sure that you are writing valid digits (the example code writes 0O for invalid characters).
Also make sure that you are writing the correct display setting value (0x88).

12 Display control — p.5 of TM1637 datasheet

