Webcam and servo motor installation guide

By Group MK2J, Fall 2014 CMPT 433

Environment pre-conditions

- BeagleBone Black running version 3.8.13-bone68
- BeagleBone Black must have connected internet access to download the open source libraries
 - ie) Via Ethernet to Router

Webcam how-to-setup

1.Building x264:

Install the following libraries for webcam:

git clone git://git.videolan.org/x264.git # cd x264

./configure --enable-shared --prefix=/usr

make

make install

2.Building ffmpeg:

git clone git://git.videolan.org/ffmpeg.git

./configure --enable-shared --enable-libx264 --enable-gpl

git remote set-url origin git://source.ffmpeg.org/ffmpeg

make

make install

3. Fixing library problem:

vi /etc/ld.so.conf

add "/usr/local/lib" to the file and then type:

Idconfig

4.v4l2-ctl libraries setup:

sudo apt-get install v4I-utils

5. Install the imagemagick

sudo apt-get install imagemagick

6.Run the script

After the library installed and set-up,

In /Webcam_part/ folder, run the shell script webcam.sh and it will automatically start taking frames in the background.

cd Webcam_part/ # ./webcam.sh

The record.sh script is available for saving the frames for recording purpose. The build script is to make the compiled c code.

7.Run the server

After the webcam setup is finished,

Go to /webServer_part/, and run "nodejs server.js" to start the server. After this, you can go to url of (ip addr):3001 to view the webpage of our security system.

cd webServer_part/
nodejs server.js

Controlling Servo with BeagleBone Black

1.Equipment:

- 1. BeagleBone Black
- 2. Pan/Tilt bracket
- 3. 2x Micro servo
- 4. Male to Male jumper wires

2.Connecting the Servos

- 1. Connect the ground wire to P9 pin 1
- 2. Connect the positive wire to P9 pin 3
- 3. Connect the PWM wire to P9 pin 14
- Refer to the "Cape Expansion Headers" image below if more than one servo is used
- Note that the ground wire is usually black or brown and the PWM wire is usually orange or yellow

3.Setting up the PWM pin

1. Backup the current Linux bootfile

2024 Note from Dr. Brian

Changing uEnv.txt unnecessary; consult PWM guide.

cd /boot/uboot # cp uEnv.txt uEnv.bak

2. Edit uEnv.txt

nano uEnv.txt

• add the following line into the uEnv.txt

optargs=quiet drm.debug=7 capemgr.enable_partno=am33xx_pwm,bone_pwm_P9_14

 we could also manually do this by using the following commands(Will need to do it every reboot):

echo am33xx_pwm > /sys/devices/bone_capemgr.@/slots
echo bone_pwm_P9_14 > /sys/devices/bone_capemgr.@/slots

• Note that the value for the @ sign is different for each user

4. Controlling the Servos

1. Initialize servo

```
# cd /sys/devices/ocp.3/pwm_test_P9_14.@
# echo 0 > run
# echo 0 > polarity
# echo 20000000 > period
# echo 1000000 > duty
# echo 1 > run
```

- Note that the value for the @ sign is different for each user
- 3. Move servo (try values around 500,000, 1,500,000, and 2,500,000)

echo 2000000 > duty

4. Turn off servo

echo 0 > run

Troubleshooting

- 1. When trying to manually control the servo motor via CLI command in the user space, it does not move!
- There is a minimum and maximum limit for the duty at which the servo motor can move to.

If the number for the duty is currently set higher than the maximum limit (2400000), or lower than (600000), then it does not move. (This applies to both left/right, up/down)

- Try setting the duty to be within the range of 600000 and 2400000
- 2. When we have the frames being taken in ".ppm" format, we spend a lot of time converting the pictures formats so that we can pass it by socket.io and display them on webpage.

Cape Expansion Headers

	Ρ	9		5V 5V 50 M		Ρ	8	
DGND	1	2	DGND		DGND	1	2	DGND
VDD_3V3	з	4	VDD_3V3		MMC1_DAT6	з	4	MMC1_DAT7
VDD_5V	5	6	VDD_5V	10/100 Ethernet @25 S	MMC1_DAT2	5	6	MMC1_DAT3
SYS_5V	7	8	SYS_5V		GPIO_66	7	8	GPIO_67
PWR_BUT	9	10	SYS_RESETN	an an anticonte	GPIO_69	9	10	GPIO_68
UART4_RXD	11	12	GPIO_60	75 9763 64	GPIO_45	11	12	GPIO_44
UART4_TXD	13	14	EHRPWM1A		EHRPWM2B	13	14	GPIO_26
GPIO_48	15	16	EHRPWM1B		GPIO_47	15	16	GPIO_46
SPIO_CSO	17	18	SPIO_D1		GPIO_27	17	18	GPIO_65
I2C2_SCL	19	20	I2C2_SDA	andalyanda 📲	EHRPWM2A	19	20	MMC1_CMD
SPIO_DO	21	22	SPIO_SCLK	A ANAL SS ANAL	MMC1_CLK	21	22	MMC1_DAT5
GPIO_49	23	24	UART1_TXD		MMC1_DAT4	23	24	MMC1_DAT1
GPIO_117	25	26	UART1_RXD		MMC1_DATO	25	26	GPIO_61
GPIO_115	27	28	SPI1_CS0		LCD_VSYNC	27	28	LCD_PCLK
SPI1_DO	29	30	GPIO_122		LCD_HSYNC	29	30	LCD_AC_BIAS
SPI1_SCLK	31	32	VDD_ADC	A Sigrad Care	LCD_DATA14	31	32	LCD_DATA15
AIN4	33	34	GNDA_ADC	LEGEND	LCD_DATA13	33	34	LCD_DATA11
AIN6	35	36	AIN5	Power/Ground/Reset	LCD_DATA12	35	36	LCD_DATA10
AIN2	37	38	AIN3	AVAILABLE DIGITAL	LCD_DATA8	37	38	LCD_DATA9
AINO	39	40	AIN1	AVAILABLE PWM	LCD_DATA6	39	40	LCD_DATA7
GPIO_20	41	42	ECAPPWMO	SHARED I2C BUS	LCD_DATA4	41	42	LCD_DATA5
DGND	43	44	DGND	RECONFIGURABLE DIGITAL	LCD_DATA2	43	44	LCD_DATA3
DGND	45	46	DGND	ANALOG INPUTS (1.8V)	LCD_DATAO	45	46	LCD_DATA1

image from: http://rabbit-note.com/2014/08/23/beaglebone-black-power-meter-hard/