How to connect the LCD screen
The Group (Andrei Vacariu, Kevin Ang, Allan Kuan)

This guide will guide the reader through picking GPIO pins, setting their mode using device
tree overlays, connecting the LCD screen, and running some example code (using our LCD
control library).

1. Choosing pins

Many of the pins on the Beaglebone Black are used by other device trees, and there could be
conflicts when trying to set modes on the chosen pins. We have found that a safe choice for
connecting the LCD screen is using pins 11 - 16 on P8.

Although the pin information for the Beaglebone Black is available in its manual, the needed
information is spread across multiple tables. There is a compiled table of all the useful
information provided by Derek Molloy here:
https://github.com/derekmolloy/boneDeviceTree/tree/master/docs

For Pins 11 - 16, we need 2 pieces of information: GPIO number and offset. Looking at the
table linked above, we get the following information:

Pin number GPIO number Offset
P8_11 45 0x034
P8 12 44 0x030
P8_13 23 0x024
P8 14 26 0x028
P8 15 27 0x03c
P8_16 46 0x038

The GPIO numbers are used for setting direction and values on the pins using the /sys
filesystem, and the offsets are used to set pin modes in the device tree overlay.

2. Setting the pin modes

Once you've picked your pins, you need to set their mode to GPIO using a device tree
overlay. These overlays are loaded at runtime by the kernel.


https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fderekmolloy%2FboneDeviceTree%2Ftree%2Fmaster%2Fdocs&sa=D&sntz=1&usg=AFQjCNFq9MtrmezYsjTeRLYl8A69a_nAJw

This is a sample overlay for the pins we have chosen above:

/*
Copyright (C)
This program is free software;

*

*/

published by the Free Software

/dts-v1/;
/plugin/;

/

{ compatible "ti,beaglebone",
/* identification */

part—-number
"OOAO",‘

version

exclusive-use

2012 Texas Instruments Incorporated - http://www.ti.com/

you can redistribute it and/or modify

it under the terms of the GNU General Public License version 2 as

Foundation.

"ti,beaglebone-black";

"LCD-1602-GPIO";

/* the pin header uses */

"pP8.16", /* LCD: DB7 */
"pg.15", /* LCD: DB6 */
"pg.14", /* LCD: DB5 */
"pg.13", /* LCD: DB4 */
"pg.12", /* LCD: RS */
"pPg.11"; /* LCD: E */

fragment@0 {

target = <&am33xx pinmux>;
~_overlay {
pinctrl test: LCD 1602 GPIO Pins {
pinctrl-single,pins = <
0x038 0x17 /* P8 16, OUTPUT PULLUP | MODE7 */
0x03c 0x17 /* P8 15, OUTPUT PULLUP | MODE7 */
0x028 0x17 /* P8_14, OUTPUT_ PULLUP | MODE7 */
0x024 0x17 /* P8_l3, OUTPUT_PULLUP | MODE7 */
0x030 0x17 /* P8 12, OUTPUT_PULLUP | MODE7 */
0x034 0x17 /* P8 11, OUTPUT PULLUP | MODE7 */
>;
bi
bi
bi
fragment@l {
target = <&ocp>;
~_overlay {
test helper: helper {
compatible = "bone-pinmux-helper";

pinctrl-names
pinctrl-0
status

"default";
<&pinctrl test>;
"Okay" ;



The exclusive-use section of the device tree states that this overlay will fail to load if there
are other overlays who want exclusive use of the same pins. This is helpful in troubleshooting
why your pin modes aren’t being set properly since there will be a related error message in
/var/log/syslog when you try to load the device tree.

Change the pin address offsets and numbers in the device tree overlay above to what you
have chosen to use. The offsets are the first column under pinctrl-single, pins.

Compiling and loading the overlay

1. Save the overlay to LCD-1602-GPI0-00A0.dts

2. Execute the following command in a terminal to compile the device tree
dtc -0 dtb -o LCD-1602-GPIO-00AO0.dtbo -@ LCD-1602-GPIO-00AO0.dts

3. Copy the compiled fileto /1ib/firmware
cp LCD-1602-GPIO-00A0.dtbo /lib/firmware/

4. Load the device tree (there should be no output from this command)
echo LCD-1602-GPIO > /sys/devices/bone capemgr.9/slots

5. Check if device tree was loaded
cat /sys/devices/bone capemgr.9/slots

6. If there are any issues, look in /var/log/syslog for clues. You might need to
choose different pins.

7. Check if pins were set properly. This is an example using pins choices above. Adding
an 8 in front is necessary because the values in this file are the full addresses not just
the offsets we had in the device tree.
grep “83c” /sys/kernel/debug/pinctrl/44e10800.pinmux/pins
Output should be:
pin 15 (44e1083c) 00000017 pinctrl-single

Loading the overlay at boot

The Debian install on the Beaglebone Black does not allow loading a device tree overlay
using /boot/uboot/uEnv. txt, so we’ll need to get the cape manager to load it as soon as
possible after booting. We do this by adding CAPE=1.CD-1602-GPI0 to
/etc/default/capemgr.

3. Connecting the LCD display

Now that we've got the pins set up to the correct modes, we’ll need to connect the pins to the
LCD screen and a potentiometer. Use the following table to connect the pins (adjusting for
your pin choices).



LCD pin Connect to
VSS GND (P9_1)
VDD 5v (P9_5)
VO Potentiometer (adjusts contrast)
RS P8 12

RW GND

E P8_11

D4 P8 13

D5 P8_14

D6 P8_15

D7 P8 16

A S5v

K GND

4. Running the example code

Save the following code in 1cd-example.c. Use the GPIO numbers you have chosen in the
first step for the pins in each struct. The first element of each struct is not currently used by
the library, but is useful for keeping track of which pins the numbers are associated with.

#include <string.h>
#include <unistd.h>
#include "lcd.h"

int main() {

struct pin pins[NUM PINS] = {
("p_11", 45}, // E
{"p_12", 44}, // RS
{"p_13", 23}, // D4
{"P_14", 26}, // D5
{"P_15", 47}, // D6
{"P_16", 46} // D7

}i

screen_init (pins);
screen clear (pins) ;

char *to write = "Hello, world!";
screen_print(pins, to write, strlen(to write), 0);



}

char *to write2 = "test";

screen_print(pins, to write2, strlen(to write2), 1);
sleep(3);

char *to write3 = "something";

screen_p;int(pins, to write3, strlen(to write3), 0);
sleep(2);

screen_clear (pins);
screen deinit (pins);

return 0;

Compile the code against the provided library:

gcc -std=gnu99 -c lcd.c
gcc -std=gnu99 -c lcd-example.c

gcc -std=gnu99 -o lcd-example lcd-example.o lcd.o

At this point when you execute 1cd-example, the code should print “Hello, world!” in the first
line, “test” on the second line, wait 3 seconds, print “something” on the first line, wait 2
seconds, and then clear the screen.

Troubleshooting

If you notice that the pin modes haven’t been set to 17, and there’s nothing suspicious
in /var/log/syslog when loading the overlay, try different pins

Check pin modes:

grep “83c” /sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Output should be:

pin 15 (44el1083c¢c) 00000017 pinctrl-single

If you get “no such file or directory” when trying to load the overlay, check
/var/log/syslog for messages about pin conflicts

Make sure you have the right pins in the exclusive-use section of the overlay. This
is useful for detecting conflicts.

Double-check your pin numbers and GPIO numbers (it's quite likely to have typos)

Do you have the pins in the right order when using the library? Look at the comments
beside the pins in the example code to see which GPIO pin is for which LCD pin
Double-check cables.

Adjust contrast using potentiometer (maybe it’s too high or too low and you can’t see
the characters)



Notes
The LCD control library is called 1cd.h and is available in the zip file.

Copyright of document
This document is licensed under a Creative Commons BY-SA license as defined here:
http://creativecommons.org/licenses/by-sa/4.0/legalcode

The Device Tree overlay code is copyright Texas Instruments under a GPLVv2 license.


http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-sa%2F4.0%2Flegalcode&sa=D&sntz=1&usg=AFQjCNF_GF5wIg4ra7SgJGWndi10upWqig

