CMPT 433 - How To Guide
Team FID

lan Fong

Fred Shih

David Baik

How to Use the BeagleBone Black to Control the
NXT Brick Through Bluetooth

Why Write your Own Library

Unfortunately, there simply isn’t a high quality bluetooth NXT library available in C. The more
libraries are implemented in python (Python-NXT) and .NET (MindSqualls). The closest third
party library available is for C++. This is due to several reasons, the first is that it's tough to
write a cross platform library because of the way the packets are designed, the second is that
it is a tedious and frustrating experience to do so. However, even though the networking is
difficult, the NXT platform does make hardware design and implementation much simpler, and
even though it is difficult, it is not impossible to get communication working reliably. This guide
focuses on showing you the general steps to implement commands from LEGO’s bluetooth
development manual.

Connecting the NXT Brick to BBB

Pairing the Devices via Command Line

1. Turn NXT Brick’s Bluetooth on
a. Navigate to bluetooth > set on/off > on

2. Pair up the 2 devices through bluetooth
a. On BBB, install the Bluetooth libraries:
sudo apt-get install bluetooth
sudo apt-get install bluez
b. Search up the NXT's MAC address:
hcitool scan
Scanning ...

00:16:53:07:36:B4 NXT

note: your MAC address will be different for your NXT Brick

c. Pair up the two devices:
bluez-simple-agent hciO <NXT’s MAC address>

The console will prompt for a PIN
Default pin on the NXT is 1234
To reset default pin on NXT:
Bluetooth > Use Default Pswd > yes

d. Register the NXT as a trusted device:
bluez-test-device trusted <NXT’s MAC address> yes

To test if the NXT is trusted, run:
#bluez-test-device trusted <NXT’s MAC address>

Returns 1 if the device is trusted

e. Connect the devices:
bluez-test-input connect <NXT’s MAC address>

The NXT should now be paired up with the BBB

Connecting to the Brick Through C

1. Required libraries:
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>
#include <sys/socket.h>

2. Pass in your MAC address as a string, then convert the address to a Bluetooth
address using str2ba()
3. Create an address of struct sockaddr_rc
4. Initialize a socket using the socket() function
socket (AF_BLUETOOTH, SOCK STREAM, BTPROTO RFCOMM) ;
5. Set the socket type to bluetooth, and select a channel:
<address struct>.rc family = AF BLUETOOTH;
<address struct>.rc channel = (uint8 t) 1;
6. Connect using the address and socket
connect (socket, (<struct sockaddr *)&
<address struct>, sizeof (<address struct>));

A successful Bluetooth connection to the NXT will show a “<” next to the Bluetooth symbol

Demo of Initializing and Connecting via Socket:

void init bluetooth(const char *bt addr, int *socket) {

struct sockaddr rc addr = {0};
int status;

*socket = socket (AF_BLUETOOTH, SOCK_ STREAM,
BTPROTO RFCOMM) ;

addr.rc family = AF BLUETOOTH;

addr.rc_channel = (uint8 t) 1;
str2ba (bt addr, &addr.rc bdaddr);
status = connect (*nxt socket, (struct sockaddr *)&addr,

sizeof (addr)) ;
if (status < 0) {

//error connecting to Bluetooth

Communicating with the NXT

The NXT Brick Command and Response packet formats can be obtained by reading
Appendix 2 of LEGO’s NXT Bluetooth Developer manual. The fields values are usually given
as hexadecimal, not decimal! The basic layout of packets are as follow, each block
represents one byte:

a. Command packets:
Command
LSB Type Command Byte 4
0 1 2 3

Command type: 0x00 to have the NXT return a response
0x80 to have the NXT not return a response

The LSB and MSB compose the length of the packet, excluding the LSB and
fields. Because no command is ever larger than 255 bytes, the MSB field is
always zero. Command specific bytes always come after the command field.

b. Response packets:

Both Command and Response ‘s first two bytes

(LSB and MSB) indicate the length of the package

Like the command packets, the response packets also have the LSB and MSB
fields which specifies the byte size of the response packet (excluding the LSB
and MSB fields themselves). There is also a status byte which follows the MSB
byte. A value of 0x00 denotes success, and anything else is a mapped error
code. Note: you will only get a response if the command type is set to 0x00.

c. Note: NXT commands are little endian

2. Commands are sent to the NXT through the socket via the write() function. Note that
the length from the Isb/msb fields is different from the size of the packet. The size
parameter for the write command is the size of the struct or array you chose to
represent the command.

write (socket, command, size of packet)

3. Responses can be read through the socket using the read() function. Note that this is
a blocking wait, which means that if you forget to ask for a response in your initial
command packet, the program will end up hanging at read.

read (socket, response, size of response)

Demo of Sending a Command to Motor A via Socket:

//struct to a Motor Command
//note the packed attribute
typedef _ attribute_ ((__packed_)) motor_cmd t ({
uint8 t 1sb;
uint8 t msb;
uint8 t cmd type;
uint8 t cmd;
uint8 t motor;
uint8 t speed;
uint8 t mode;
uint8 t regulation;
uint8 t ratio;
uint8 t state;
union {
uint8 t tacho limit([4];
uint32 t tacho;
bi
} SetMotor;

void run motor A(const int *nxt socket) {
//initialize the Motor Command
SetMotor cmd = {

0x0cC, //LSB

0x00, //MSB

0x80, //Command Type
0x04, //Command

0x00, //Motor A

0x64, //Speed 100
0x01, / /Mode

0x00, //Regulation off
0x00, //Turn Ratio
0x20, //Run State

{{ OIOIOIO b} //TaChO Limit
bi

//send command to the NXT Brick
if (write (socket, cmd, sizeOf (cmd)) < 0) {
perror ("error sending command") ;

abort () ;
}
}
int main () {
int socket = 0;

init bluetooth(“00:16:53:07:36:B4”, &socket);
run_motor A(socket);

//Close Bluetooth connection
close (socket) ;

Note: If a struct is used over a byte array, you must tell the compiler to pack the fields. On
GCC and Clang, this is accomplished by adding the packed attribute (as shown above). If you
do not do this, the compiler will most likely add padding, which will give you result in garbage
transmissions between BBB and NXT.

Quick Reference Guide to NXT Packets

Because LEGO frequently changes the URL for the bluetooth development sdk, we have
embedded a table of useful packets in this guide.

a. Motor Commands

Byte Type Description

0 LSB Least significant byte
0x0C set command
0x03 read command

1 MSB 0x00 Most significant byte
2 Command Type 0x00 with response (useful when reading motor
values)

0x80 no response

3 Command 0x04 to set command to motor
0x06 to read values from motor

4 Motor Specify motor of use
0x00 Motor A

0x01 Motor B

0x02 Motor C

OxFF All motors

5 Speed/Power Desired speed to set to motor
Between -0x64 (-100) to 0x64 (100)

6 Mode 0x01 to turn on motor
0x02 to turn use brakes when stopping motor
0x04 to turn on regulation

7 Regulation

0x00 no regulation

0x01 to run motor at the specified Speed

0x02 to set 2 or more motors to a synchronized
speed

8 Turn Ratio

Between -0x64 (-100) to 0x64 (100)

9 Run State

0x00 turn off motor
0x20 turn on motor

10-14 Tacho Limit

the amount of degrees to rotate the motors

b. Motor Response

Byte Type Description

0 LSB 0x19 Least significant byte

1 MSB 0x00 Most significant byte

2 Response Byte 0x02

3 Response Byte 0x06

4 Status Status of the motor

5 Motor Motor of the returned values

6 Speed/Power Current speed of motor

7 Mode Current mode

8 Regulation Current regulation

9 Turn Ratio Current turn ratio

10 Run State Current Runstate

11-14 | Tacho Limit Current Tacho Limit

15-18 | Tacho Count Distance the motor has rotated from last reset
position

19-22 Block Tacho Count | Position of the motor from most recent command

23-26 Rotation Count Position of the motor from last reset position

c. Motor Reset Command

Byte Type Description
0 LSB 0x04 Least significant byte
1 MSB 0x00 Most significant byte
2 Command Type 0x00 with response
0x80 no response
3 Command O0x0A
4 Motor Specify motor of use
0x00 Motor A
0x01 Motor B
0x02 Motor C
5 Relativity TRUE to set position relative to last movement

FALSE to set to absolute position

8. Sensor Commands and Responses
a. Sensor Command

Byte Type Description

0 LSB Least significant byte
0x05 to send command to sensor
0x03to read sensor

1 MSB 0x00 Most significant byte

2 Command Type 0x05 to set command to sensor
0x07 to read values from sensor

3 Command 0x00 with response (useful when reading motor
values)
0x80 no response

4 Port Specify sensor port
0x00 Port 1
0x01 Port 2
0x02 Port 3
0x03 Port 4

5 Sensor Type values are from LEGO MINDSTORMS NXT
documentations in the references
0x0B Low speed 9V

6 Sensor Mode values are from LEGO MINDSTORMS NXT
documentations in the references
0x00 Raw Mode

b. Sensor Response

Byte Type Description

0 LSB OxOF Least significant byte
1 MSB 0x00 Most significant byte
2 Response Byte 0x02

3 Response Byte 0x07

4 Status Status of sensor

5 Port Port of the sensor

6 Validity TRUE if data is valid

7 Calibration TRUE if data has been calibrated
8 Sensor Type Current Sensor type

9 Sensor Mode Sensor Mode

10 - 11 Raw value Raw value

12-13 Normalized Value Normalized value

14 -15 Scaled Value Scaled value

16 - 17 Calibrated Value Calibrated value

Cited Guides and Documentation

1. Lego mindstorm bluetooth reference manual v1.00
2. Gentoo Wiki - Device Pairing: http://wiki.gentoo.org/wiki/Bluetooth#Device_pairing
3. NXT LCD Image: http://nnxt.blogspot.ca/2012/10/motorcontrol-nxt.html

