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Keypads provide a simple and convenient mechanism for a user to interact with an embedded device. 

They are available in a variety of form factors (e.g., membrane, conductive rubber, and pushbutton) and 

electrical arrangements (e.g., common-bus and matrix) (see fig. 1).This guide covers the use of a 

common-bus style keypad. 

 

One problem with using mechanical switches is that they will not produce perfectly-clean digital signals; 

instead of transitioning from logical 0 to logical 1 instantaneously, the signal will bounce erratically for a 

few milliseconds. This phenomenon is called "noise" (see fig. 2--image source: Wikipedia). 

  



Fig. 2: Digital Noise 

If unmitigated, digital noise will cause a number of problems for electronics; for example, a single 
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There are several important things to note about this circuit. First, the pin numbers on the keypad itself 

are not in an intuitive order, and they're specific to the model of keypad that we happened to acquire. 

Second, pull-up resistors are used so that the key signals float high, as our encoder circuit happens to 

require active-low signals. We used ten 1/4-watt resistors, but it would be simpler (and more compact) 

to use what's called a "resistor network", a component that consolidates an array of resistors into one 

package with one end of each resistor connected together. 

This circuit uses the 555 timer IC (also available as NE555, LM555, etc.) in what's known as an "astable" 

(self-triggering) configuration. The frequency of the clock is given by the equation 
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Where R1 is the value of the resistor that connects pin 7 to +5v, R2 is the value of the resistor between 

pins 6 and 7, and C is the value of the capacitor that connects pin 2 to ground. In our circuit, the 



frequency works out to about 70Hz (a period of about 15mS)--as this was a suggested frequency for 

switch-debouncing applications on one website we found. 

The 74374 IC (also available as 74LS374, 74HC374, etc.) provides eight D-type latches in one package; 

because we are interested in latching ten digital signals, we need two ICs working in tandem. The inputs 

are usually referred to as "Dxxx" (data) and the outputs are usually referred to as Qxxx (state). The /OE 

input, when asserted (active-low), tells the latches to output their current state (if this signal is not 

asserted, the outputs will "float" so that other components can use the same data bus). As we do not 

have any other components using this bus, we can tie the /OE pins to ground so that the outputs will 

always the current state of the latches. 

While this debouncing approach works, it may be considered overkill for our needs. Having three extra 

ICs uses valuable breadboard space. 

Another approach to hardware debouncing is to use "debouncing capacitors". This is a much more 

space-economical solution. See fig. 4: 

 

Notice that when a keypad button is pressed, it shorts the corresponding capacitor, causing it to 

discharge. In our testing, we found this to be an equally-reliable approach to using the clocked latches, 

and ultimately chose this option. 

Now that we've obtained cleaner input signals, we can either use them as-is (thus requiring ten GPIO 

pins on the BeagleBone Black), or we can encode the keypress into binary to reduce the number of pins 

down to five (four bits are sufficient for binary/BCD values of 0-9, and a fifth bit indicates that the value 

is ready to be read [to distinguish the "0" key from a lack of any input]). The 74147 IC (also available as 

74LS147, 74HC147, etc.) is a "ten-to-four" priority encoder, which takes the highest-numbered asserted 



input and encodes that as a four-bit number on its output pins. For whatever reason, the 74147 actually 

only has nine inputs--which is bothersome. We will have to generate the "ready" signal ourselves. See 

fig. 5 for our implementation. 

 



The five logic gates amount to a five-input NAND gate, which outputs a 0 when all inputs are 1, and 1 

otherwise (when any key is pressed). We attached five LEDs to the four data signals and the ready signal 

to facilitate debugging, and convince ourselves that the circuit was working properly. Note that the 

"ready" signal is active-low in this implementation. 

The final step in preparing the signals for consumption by the BeagleBone Black is to convert them from 

5 volts to 3.3 volts, as this is the maximum voltage the BBB is rated to accept on GPIO input pins. We 

used five NPN transistors to accomplish this. The BBB provides a 3.3v source that we can use for this 

sub-circuit. Note that if you are powering the BBB via USB (instead of through the AC adapter), you may 

only get ~1.8v on the nominal 3.3v pins. Also note that you will need to tie the ground of your 5.5v 

supply with the ground of your 3.3v supply (or the BBB itself); this isn't shown in our schematic. 

Fig. 6: Completed Circuit (5v, 3.3v, ground connections, and data output wires not shown for clarity; we 

used the top red rail for 3.3v and the bottom red rail for 5v. There is an error in this photo: the keypad 

should be moved down so it makes electrical contact with the bottom half of the breadboard.)

 

We arbitrarily chose five GPIO pins that were contiguous on the P9 header, and known to not conflict 

with anything else, for our inputs. 



To configure the GPIO pins as inputs, you will need to write some values to the /sys/class/gpio 

hierarchy. This can be accomplished either with a shell script, or with C code. Note that if you use a shell 

script, you will need to call it before the C program runs when the BBB boots (you could call it from 

/home/root/.profile). Our script is as follows: 

# gpio-init.sh 
 
# export P9 header GPIO pins 12, 13, 14, 15, 16 
 
# keypad bit 0 -> pin 12 --> gpio60 
# keypad bit 1 -> pin 13 --> gpio31 
# keypad bit 2 -> pin 14 --> gpio50 
# keypad bit 3 -> pin 15 --> gpio48 
# keypad ready -> pin 16 --> gpio51 
 
echo 60 > /sys/class/gpio/export 
echo 31 > /sys/class/gpio/export 
echo 50 > /sys/class/gpio/export 
echo 48 > /sys/class/gpio/export 
echo 51 > /sys/class/gpio/export 
 
echo in > /sys/class/gpio/gpio60/direction 
echo in > /sys/class/gpio/gpio31/direction 
echo in > /sys/class/gpio/gpio50/direction 
echo in > /sys/class/gpio/gpio48/direction 
echo in > /sys/class/gpio/gpio51/direction 
 

At this point you should be able to test that the BBB is capable of reading keypad values by running a 

second shell script: 

# gpio-test.sh 
 
cat /sys/class/gpio/gpio60/value 
cat /sys/class/gpio/gpio31/value 
cat /sys/class/gpio/gpio50/value 
cat /sys/class/gpio/gpio48/value 
cat /sys/class/gpio/gpio51/value 

 

This will dump the status of the five GPIO lines to the console. 

  



Fig. 7: Output of gpio-test.sh with no input, and while the "9" key is being pressed. From top

the outputs are bit 0, bit 1, bit 2, bit 3, and /ready (it is active

It should be possible to configure the "ready" input as an interrupt trigger, but for our purposes this was 

not necessary, so we leave the implementation as an exercise for the reader. Instead, our C program 

(which runs in user space) runs a thread that polls th

code to get you started. 

First, we define some constants, including the paths to the GPIO value files of interest:

static const int const NUM_BITS = 4;
 
static const char const NOT_READY = '1';
static const char const READY = '0';
 
static const char * const KEYPAD_BIT_FILE_NAMES[] =  {
 "/sys/class/gpio/gpio60/value",
 "/sys/class/gpio/gpio31/value",
 "/sys/class/gpio/gpio50/value",
 "/sys/class/gpio/gpio48/value",
}; 
 
static const char * const KEYPAD_READY_FI
"/sys/class/gpio/gpio51/value";
 
We also define a wrapper for nanosleep() to wait the specified number of milliseconds:
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/* 
 Waits the specified number of milliseconds. 
*/ 
static void sleep_ms(int ms) 
{ 
 long seconds = 0; 
 long nanoseconds = 1000000 * ms; 
 struct timespec reqDelay = {seconds, nanoseconds};  
 nanosleep(&reqDelay, (struct timespec *) NULL); 
} 
 

Some utility functions to wait for key events: 

 

/* 
 Waits until the 'keypad ready' signal is in the de sired state. 
*/ 
static void wait_for_key_event(char desired_state) { 
 FILE *file = fopen(KEYPAD_READY_FILE_NAME, "r"); 
 
 while(1) { 
  fseek(file, 0, SEEK_SET); 
  char buffer[10]; 
  fread(buffer, sizeof(char), sizeof(buffer) - 1, f ile); 
 
  printf("\n"); // if this line is commented out, t he program 
will stop working--we did not have time to determin e why this was needed 
 
  if (buffer[0] == desired_state) { 
   fclose(file); 
   return; 
  } 
 
  sleep_ms(50); 
 } 
} 

 

/* 

 Waits for the user to press a key on the keypad. 
*/ 
static void wait_until_ready() { 
 wait_for_key_event(READY); 
} 
 
/* 
 Waits for the user to release all the keys on the keypad. 
*/ 
static void wait_until_not_ready() { 
 wait_for_key_event(NOT_READY); 
} 
 

In practice, the buffer will only ever have two characters in it, so it's not necessary to allocate a 10-character array. 

We found it necessary to fseek() to the beginning of the file in each iteration of the loop, though this seems 

redundant. 



 

And finally, the function that translates the input signals into a usable value: 

 

/* 
 Returns the ASCII character ('0'->'9') correspondi ng to the next 
keypress on the keypad. 
*/ 
static char read_keypad() { 
 wait_until_not_ready(); 
 wait_until_ready(); 
 
 int result = 0; 
 
 for (int i = 0; i < NUM_BITS; i++) { 
  FILE *file = fopen(KEYPAD_BIT_FILE_NAMES[i], "r") ; 
  char buffer[10]; 
  fread(buffer, sizeof(char), sizeof(buffer) - 1, f ile); 
 
  if (buffer[0] == '1') { 
   result |= 1 << i; 
  } 
 
  fclose(file); 
 } 
 
 return '0' + result; 
} 
 

What you do with the resulting keypress value is, of course, up to you. From our keypad-scanning thread, we chose 

to pipe the key character back to the main thread so that it could be displayed in stdout, and also wrote the value 

to a socket that our webserver was listening to. 

 

We found that our C code worked reliably with the 50mS wait period on the first attempt, and did have a need to 

try other polling frequencies. Experiment with this value as needed. 

 

We hope this guide is useful to you! 

 

We hereby grant permission to Dr. Brian Fraser to make this guide freely available to other students. 


