12C Guide: ADC

by Brian Fraser
Last update: Jan 24, 2025

This document guides the user through:
1. Understanding I2C
2. Using I2C from Linux command-line to read an analog to digital converter (ADC).
3. C code to access 12C and drive the display.

Guide has been tested on
BeagleBone (Target): Debian 12.8
PC OS (host): Debian 12.8

Table of Contents

R 2 O 2 7 T3 TR
ROTOIOIICES. ...ttt e et ee e e e e aee e ee e e eeeeeeeaeeee e e eeeeeeaaeee e e eeeeeeeaeaeeeeeeeeeeeeaeeaeeeeeeeaeeeneeeneennane

2. I12C via Linux Command LiNe.......c.cccteririirieniertieeieeie ettt st st esreesre s s st sstesseesnessneenees
2.1 Seeing the T2C BUS......ciiiiiiiiiiiiiieieiie ettt et este e sste e st e e s staeesbaeessaeeessseessssaessssaesssseesssessnseens
2.2 Working with a Device from Command Line.........cccccecueriirirririenienieneeenieeeeeeeseeieeee e
2.3 Steps for Zen Hat’s DAC......ccuiiiiieieeieeieese et esteeeteesteeete et e ssaessssessaesseesssesssessssessseesssessssesssens

3. T2C VIA € GOttt ettt ettt ettt s e s et e st e e s at e st e e s st e st e e bt e s abeesseesabee bt esabeesseesabeesaaas
3.1 INIALZATION. ..eueeeeieeeieee ettt sttt e s e s bt e st e e bt e s st e b e e st e e st e sane e neesanean
3.2 WIIINEG @ ROGISTOT ...ttt ettt ettt e s et e e s aba e e s e e abte e e e snsaeeesennneesenans
3.3 REAAING @ ROGISTOT...c.uviiiiiieiiiieiiieeeite ettt sttt e s ste e s te e siteessateesabaeesssaeesasaeesssaesnssaesssseesnsees
2R LY F= VL0 1) (0 =412 11 0 PP

Formatting

1. Commands for the host Linux’s console are show as:
(host)$ echo "Hello PC world!"

2. Commands for the target (BeagleBone) Linux’s console are shown as:
(byai)$ echo "Hello embedded world!"

3. Almost all commands are case sensitive.

Revision History
* Jan 24, 2025: Changed to BYAI; added ADC.

1. 12C Basics

The I°C (Inter-Integrated-Circuit, pronounced “I squared C”, and often written 12C) protocol is for
synchronously communicating between a master and slave devices using two pins: a data (SDA) and a
clock (SCL). Often the microprocessor is the master device which controls communication with one or
more slave devices on the bus.

On the BeagleY-Al, the hardware supports numerous 12C buses:

HW | Linux Device |Pins Devices Attached
Bus
[12C1 |/dev/i2c-1 GPIO2 (pin 3) = SDA Address 0x18: Audio (may not show up)
GPIO3 (pin 5) = SCL Address 0x19: Accelerometer
Address 0x48: ADC Chip
12C2 |/dev/i2c-2 GPIOO (pin 27) = SDA Used for [2C communication to an EEPROM,
GPIO1 (pin 28) = SCL if present, on a Hat. Prefer 12C1.

[2C3 |/dev/i2c-3

12C4 |/dev/i2c-4 | GPIO25 (pin 22) = SDA Additional 12C if needed
GPIO22 (pin 15) = SCL

I2C5 |/dev/i2c-5

Each chip connected to an I2C bus has a unique address which is hard-wired into the chip. (Sometimes
the hardware designer can select one of a few possible addresses for a chip.) In the simplest case, when
the master wants to initiate a read or write to a device, it communicates over the appropriate 12C bus
and indicates the address of the device it wishes to interact with.

Each device exposes a set of registers in a small address space. Each register has a special purpose.
Note that there three things one must specify when interacting with a device:

1. Which bus a device is on (hard-wired).

2. What 12C address that device has (hard-wired).

3. What register address to read/write from (from data-sheet).

References

* BeagleY-AI Pinout: https://pinout.beagleboard.io/pinout/i2c

* Using [2C ADC:
https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-using-i2c-adc.html

https://docs.beagleboard.org/boards/beagley/ai/demos/beagley-ai-using-i2c-adc.html
https://pinout.beagleboard.io/pinout/i2c

2. 12C via Linux Command Line!

This section walks through controlling a 4-channel analog to digital converter (ADC): a Texas
Instruments TL.A2024. By controlling this I2C device, we can read the voltages output by an analog
device (such as an analog joystick). This chip is found on the Zen Hat, and has a joystick connected to
channels 0 and 1.

2.1 Seeing the I12C Bus

All I2C buses are controlled through the Linux kernel. Let’s see what’s on the bus.

1. Install the I2C tools (if not already installed; requires internet access):
(byai)$ sudo apt-get install i2c-tools

2. Determine which 12C bus the device is on.
* Check the hardware schematic to determine which device you are accessing.
* If you are wiring in a new 12C devices to the BeagleY-AlI, you should use the I2C1 bus.

3. Display which I2C buses Linux currently has enabled (argument is “minus lower-case L”):
(byai)$ i2cdetect -1

i2c-1 i2c OMAP I2C adapter I2C adapter
i2c-2 i2c OMAP I2C adapter I2C adapter
i2c-3 i2c OMAP I2C adapter I2C adapter
i2c-4 i2c OMAP I2C adapter I2C adapter
i2c-5 i2c OMAP I2C adapter I2C adapter

4. Display I2C devices on the chosen 12C bus (here is 12C1):
(byai)$ i2cdetect -y -r 1
0o 1 2 3 4 5 6 7 8 9 a b c¢c d e f£

00: el - o oo o o

10: == == == == == == == == == 19 —= —= —= —— —— -

20: == —= —= mm mm mm mm mm e e em e

30. _— e, e e e e e e e e e e e ——

40: == == == == == —= == = 48 == == —= —= —— —— -

50. —_—— e, e e - - —— —— —— —— —— ——
60- —_— e, e e e e e e e e e ——

70. _—— e, e e e e ——

¢ Where 1 refers to the Linux device /dev/i2c-1

° K(__”

means no device found.
“##” (like “19”) means a device was detected at address ## (hex).

“UU” (for example on /dev/i2c-2) means in use by a kernel driver.
* You may also see “18” in your table.

5. Troubleshooting
* If yourun
(byai)$ i2cdetect -y -r 1
and it takes a long time (seconds per address), and does not find anything, then it might
mean the pins are not configured for 12C use. Check
/boot/firmware/extlinux/extlinux.conf to see what overlays are loaded.

1 Steps referenced from Exploring BeagleBone by Derek Molloy, 2015, chapter 8.

https://www.ti.com/lit/ds/symlink/tla2021.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1737824855665&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftla2021
https://www.ti.com/lit/ds/symlink/tla2021.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1737824855665&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftla2021

2.2 Working with a Device from Command Line

1. Display the internal memory of an 12C device
(byai)$ i2cdump -y 1 0x48 w
0,8 1,9 2,a 3,b 4,c 5,d 6,e 7,f
00: 0000 8385 0080 ff7f 0000 8385 0080 XXXX
08: 0000 8385 0080 ff7f 0000 8385 0080 XXXX
10: 0000 8385 0080 ff7f 0000 8385 0080 XXXX

* This shows the internal memory for the device at address 0x48 (ADC converter) on
/dev/i2c-1. Output may differ for you.

* The 'w at the end specifies to view the data as words (2 bytes).

* Consult the data sheet for your I12C device to identify what each register address means. In
this output, note that the data repeats.

* You can also read a single byte of memory, if desired:
(byai)$ i2cget -y 1 0x48 0x01 w
0x8385

Arguments explanation:

* -y: Disable “are you sure” confirmation prompt

* 1:12Cbus /dev/i2c-1

* 0x48: Address of device on bus

* 0x01: Register address to read.

* w: Format of data (read a word)

Value printed depends on state of device and may be different for you.

2. Write to the I12C device using i2cset command:
(byai)$ i2cset -y 1 0x48 0x01 0x83C2 w
* This commands control device with address 0x48 on /dev/i2c-1: into register 0x01 it
writes 0x83C2.

* Doing this on the ADC device sets the device to continuously samples its analog input
channel 0 and be ready to for the controller (host) to read it out with a later command.

3. Display device internal memory:
(byai)$ i2cdump -y 1 0x48 w
0,8 1,9 2,a 3,b 4,c 5,d o6,e 7,f
00: b035 8342 0080 ff7f a035 8342 0080 XXXX
08: b035 8342 0080 ff7f a035 8342 0080 XXXX
10: b035 8342 0080 ff7f a035 8342 0080 XXXX

<... omitted...>

* Notice that the value in the 3" column (under the “1,9” has changed. It now shows 0x8342
which is off by one bit from the requested 0x83C2. This change is likely due to a specific
meaning of the bit.

* Output may differ.

2.3 Steps for Zen Hat’s DAC

Here are the steps to read the joystick on the Zen Hat’s DAC
1. Set the DAC mode:

* Continuously sampling channel 0 (Joystick Y):
(byai)$ i2cset -y 1 0x48 1 0x83C2 w

* Continuously sampling channel 1 (Joystick X):
(byai)$ i2cset -y 1 0x48 1 0x83D2 w

* Continuously sampling channel 2 (LED Receive):
(byai)$ i2cset -y 1 0x48 1 Ox83E2 w

* Continuously sampling channel 3 (ADC Header, pin 2:
(byai)$ i2cset -y 1 0x48 1 Ox83F2 w

* Reference: TLA2024 datasheet section 8.6.2, Configuration Register bits 14:12 Input
Multiplexer Configuration.

2. Read the voltage:
(byai)$ i2cget -y 1 0x48 0x00 w

* The returned value gives the least-significant byte first. So, if the return is: 0xAB12 the
actual value is 0x12AB

* Value will be 12-bits (it’s a 12-bit ADC), with the value left-aligned, as shown in the table
showing the bits for this register. The bottom 4 bits will be 0s. To make the value easiest to
work with, it is a good idea to shift the value so that the bits are right-alaign.

8.6.1 Conversion Data Register (RP = 00h) [reset = 0000h]

The 16-bit conversion data register contains the result of the last conversion in binary two's-complement format.
Following power-up, the conversion data register clears to 0, and remains at 0 until the first conversion is

complete.
Figure 16. Conversion Data Register
15 14 13 12 11 10 9 8
D11 D10 Dg D3 D7 D6 D5 D4
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h
7 6 5 4 3 2 1 0
D3 D2 D1 Do RESERVED
R-Oh R-Oh R-0h R-0h R-0h

Source: TLLA2024 datasheet

https://www.ti.com/lit/ds/symlink/tla2021.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1737824855665&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftla2021
https://www.ti.com/lit/ds/symlink/tla2021.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1737824855665&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftla2021

3. 12C via C Code

3.1 Initialization
The following function initializes the 12C device, passing in the device path like “/dev/i2c-1".
static int init i2c bus(char* bus, int address)

{
int i2c file desc = open(bus, O RDWR);

if (i2c _file desc == -1) {
printf ("I2C DRV: Unable to open bus for read/write (%s)\n", bus);
perror ("Error is:");

exit (EXIT FAILURE) ;

if (ioctl(i2c file desc, I2C SLAVE, address) == -1) {
perror ("Unable to set I2C device to slave address.");
exit(EXlTihAlLURﬂ);

}

return i2c_file desc;

3.2 Writing a Register

The following function allows the program to write to an 12C device's register:

static void write i2c reglé6 (int i2c file desc, uint8 t reg addr, uintl6 t value)

{

int tx size = 1 + sizeof(value);
uint8 t buff[tx size];

buff[0] = reg addr;

buff[l] = (value & O0xFF);

buff[2] (value & OxFF00) >> 8;
int bytes written = write(iZ2c file desc, buff, tx size);
if (bytes written != tx size) {
perror ("Unable to write i2c register");
exit(EXITiFAILURE);

3.3 Reading a Register

The following function allows the program to read from an I2C device's register:
static uintl6 t read i2c reglé6(int i2c file desc, uint8 t reg addr)

{
// To read a register, must first write the address
int bytes written = write(iZc file desc, ® addr, sizeof(reg addr));
if (bytes written != sizeof (reg addr)) {
perror ("Unable to write i2c register.");
exit (EXIT FAILURE);

// Now read the value and return it
uintl6 t value = 0;
int bytes read = read(i2c file desc, &value, sizeof(value));
if (bytes read != sizeof(value)) {
perror ("Unable to read i2c register");
exit (EXIT FAILURE);
}

return value;

3.4 Main program

This continuously reads the joystick’s Y position. Note that it reads the raw bytes: these bytes must be
swapped and shifted to be meaningful.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <stdint.h>
#include <stdbool.h>

// Device bus & address
#define I2CDRV_LINUX BUS "/dev/i2c-1"
#define I2C DEVICE ADDRESS 0x48

// Register in TLA2024
#define REG CONFIGURATION 0x01
#define REG DATA 0x00

// Configuration reg contents for continuously sampling different channels
#define TLA2024 CHANNEL CONF 0 0x83C2

int main ()

{
printf ("Read TLA2024 ADC\n");

int i2c file desc = init i2c bus (I2CDRV LINUX BUS, I2C DEVICE ADDRESS);

// Select the channel
write i2c regl6(i2c file desc, REG CONFIGURATION, TLAZ2024 CHANNEL CONE 0);

while (true) {

// Read a register:
uintl6 t raw read = read i2c _regl6(i2c_file desc, REG DATA);

printf ("Raw reading: 0x%04x\n", raw read);

// sleep(l);
}

// Cleanup I2C access;
close(i2c_file desc);
return 0;

	1. I2C Basics
	References
	2. I2C via Linux Command Line
	2.1 Seeing the I2C Bus
	2.2 Working with a Device from Command Line
	2.3 Steps for Zen Hat’s DAC

	3. I2C via C Code
	3.1 Initialization
	3.2 Writing a Register
	3.3 Reading a Register
	3.4 Main program

