
Cross-Compiling ALSA for Rust
Steps by Rahul Rajesh

This assumes we use a build script when building with Cargo. This file is usually the build.rs file
located at the project root directory. The following example shows linking the asound library and
assumes it lives in the same path as in the assignments.

Rust and C++ (with Rust's cxx library)

Inside build.rs and inside it's main function we add the following lines:

// inside the main function of build.rs 

use directories::UserDirs;

let user_dirs = UserDirs::new().unwrap();

println!("cargo:rustc-link-search={}/cmpt433/public/asound_lib_BBB", 

user_dirs.home_dir().to_str().unwrap());

We use the directories library/crate to avoid hardcoding the username to library path. {} (in line 3 
above) should expand to something like /home/rrajesh. Since the directories library is a build 
dependency we can add it under [build-dependencies] inside of Cargo.toml instead of 
[dependencies].

When we cross-compile Rust for BBG, we have a config file at .cargo/config. To add the dynamic 
library we add another line to config file.

// entirety of .cargo/config

[build]

target = "armv7-unknown-linux-gnueabihf"

[target.armv7-unknown-linux-gnueabihf] 

linker = "arm-linux-gnueabihf-gcc" 

rustflags = ["-ldylib=asound"]

The line of interest is the green line above from the entire config file posted above. Ideally, we would 
expect the following line to be also part of the build script and that's what our team understood from 
Cargo's docs. However, it didn't work.



Rust only (Maybe)
This depends because usually you don't need a build.rs file when cross compiling pure Rust code
(you only need to specify the target in .cargo/config). If you do have build.rs file, I think the 
above config could work with or without 
linker = "arm-linux-gnueabihf-gcc".

In conclusion, with Rust and C++ (with Rust's cxx library), inside build.rs we add the 3 lines 
seen above (yellow line most important) and inside .cargo/config we add the green line. I also 
wanted to mention that the cxx library has guides on using CMake or other build systems instead
of Cargo which maybe easier for some people. With Rust (and has buildr.rs) only, this solution is
worth trying but it has never been tested.


	Rust and C++ (with Rust's cxx library)
	Rust only (Maybe)

