
Assignment 3: Beat-Box CMPT 433 with Brian Fraser

Assignment 3: Beat-Box
May be done individually or in pairs.
Do not give your work to another student, do not copy code found online without citing it,
and do not post questions about the assignment online.

Post questions to the course discussion forum.
You may use any code you have written for this offering of CMPT 433. You may not
resubmit code you or any one else has submitted for previous offerings.

1. Drum-Beat Info
Your task is to create an application that plays a drum-beat. For this, you'll need a basic
understanding of what goes into a drum-beat and music.

Music is played at a certain speed, called the tempo. This tempo is usually in beats per minute
(BPM), and often ranges between ~60 (slow) and ~200 (fast) BPM. The beat is the time of a
single standard note (called a quarter note).

The “notes” in a drum-beat correspond to the drummer striking different drums (or in our case,
playing back recordings of those drums). Often, the music calls for hitting a drum faster than just
on the full beats, and hence often notes are played on half-beat increments (called an eight note).

For our standard rock drum beat, we'll be using three drum sounds: the base drum (lowest sound),
the snare (the sharp, middle sound), and the hi-hat (high metallic “ting”).

Music is often laid out in measures of 4 beats (hence the “quarter note”). A standard rock beat,
laid out in terms of beats, is:

Beat
(count from 1)

Action(s)
at this time

1 Hi-hat, Base

1.5 Hi-hat

2 Hi-hat, Snare

2.5 Hi-hat

3 Hi-hat, Base

3.5 Hi-hat

4 Hi-hat, Snare

4.5 Hi-hat

If you were coding this, you might have a loop that continuously repeats. Each pass through the
loop corresponds to a ½ beat (which is an eighth note, and one row in the above table). The loop
first plays any needed sound(s) and then waits for the duration of half a beat time.

The amount of time to wait for half a beat is:
Time For Half Beat [sec] = 60 [sec/min] / BPM / 2 [half-beats per beat]

If you want the delay in milliseconds, multiply by 1,000.

Generated Feb 27, 2024, 11:09 PM Page 1/11 Dr. Fraser ©

Figure 1: Musical score showing a rock beat.

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

2. Folder Structure
Submit a single ZIP file containing your beat-box C/C++/Rust code, wave files, and NodeJS
code. Must use CMake if building with C or C++. The build script must:

Build your C/C++/Rust application to a file name beatbox deployed to:
~/cmpt433/public/myApps/
Copy your audio files to:
~/cmpt433/public/myApps/beatbox-wav-files/
Copy your NodeJS server to:
~/cmpt433/public/myApps/beatbox-server-copy/

You can make no assumptions about either the current user’s name, or where we will unzip your
code, so don't use relative paths to get to the above locations; use $(HOME) instead.

When we run your application on the target, you may assume that:
We will have correctly loaded the I2C and audio virtual capes.
We will have installed ALSA on the target and host, as described in the guide.
We will have run npm install in the ~/cmpt433/public/myApps/beatbox-
server-copy/ folder either from the target.

See course website for a sample CMake project.

Generated Feb 27, 2024, 11:09 PM Page 2/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

3. Beat-Box
You will create a Beat-Box application which can play different drum-beats on the BeagleBone
using the Zen cape for audio output, and its joystick for input.

3.1 Audio Generation
The application must:

Generate audio in real-time from a C/C++/Rust program using the ALSA API1, and play
that audio through the Zen cape's head-phone output.

Audio playback must be smooth, consistent, and with low latency (low delay between
asking to play a sound and the sound playing).
At times, multiple sounds will need to be played simultaneously. The program must add
together PCM values to generate the sound.

Generate at least the following three different drum beats (“modes”). You may optionally
generate more.
1. No drum beat (i.e., beat turned off)
2. Standard rock drum beat, as described in section 1. .
3. Some other drum beat of your choosing (must be at least noticeably different). This beat
need not be a well-known beat (you can make it up). It may (if you want) use timing other
than eighth notes.

You may add additional drum beats if you like! Have fun with it!
Must use at least three different drum/percussion sounds (need not use the ones
provided, but should use reasonably well known percussion sounds like a drum, bell,
cymbal, …). For example, a rock beat using the base drum, hi-hat, and snare.

Control the beat's tempo (in beats-per-minute) in range [40, 300] BPM (inclusive); default
120 BPM. See next section for how to control each of these.
Control the output volume in range [0, 100] (inclusive), default 80.
Play additional drum sounds when needed (i.e., have functions that other modules can call
to playback drum sounds when needed).
Audio playback must be smooth, consistent, and with low latency (low delay between
asking to play a sound and the sound playing).

1 Must get special permission to generate sound using other approaches or frameworks.

Generated Feb 27, 2024, 11:09 PM Page 3/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

Optional Hints
Follow the audio guide on the course website for getting a C program to generate sound.
Look at the audioMixer_template.h/.c for suggested code on how to go about
creating the real-time PCM audio playback of sounds.

You don't need to use this code, and you may change any of it you like.
For the drum-beat audio clips, you may want to use:

base drum: 100051__menegass__gui-drum-bd-hard.wav
hi-hat: 100053__menegass__gui-drum-cc.wav
snare: 100059__menegass__gui-drum-snare-soft.wav

When you are first completing the low-level PCM audio mixing code, first try setting your
main() to something like the following pseudo-code:

initialize audio mixer
while(true) {
 play the base drum sound
 sleep(1);
}

Remove this code once you have written the beat-generation module/thread.

After you can play one sound reliably, try using the same loop as above, but this time play
2 sounds at once (i.e, play base drum and hi-hat before sleep(1)).
Beyond the low level audio mixer module, you’ll likely want a higher level module which
generates the drum beats, and allows other modules to request a sound be played.

You’ll likely need a thread in here to continuously generating the beat.
Have your thread’s sleep duration depend on the current tempo (beats per minute)

3.2 Required Zen Cape Input Controls
3.2.1 Joystick Requirements

Press in (centre) to cycle through the beats (modes).
Default is the standard rock beat, and it should then cycle through the custom beat(s),
and then loop back around to none (off), and next back to the standard rock beat
again, ...
Must be debounced such that it reliably only switches the mode once per normal user's
press on the button.
If the user presses and holds the joystick in, you may make it either do nothing more
than just changing the beat mode once, or have it reasonably cycle through beat modes.

Pressing up increases the volume by 5 points; down decreases by 5 points.
Don't allow it to exceed the limits (above).
The user should be able to reliably press and release the joystick and have it change the
volume just once. And the user should be able to press and hold the joystick and have it
keep changing. No precise timing is required, just easy to control.

Pressing right increases the tempo by 5 BPM, left decreases by 5 BPM.
Same requirements as the volume.

Generated Feb 27, 2024, 11:09 PM Page 4/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

3.2.2 Accelerometer Requirements
Allow the user to air-drum with the BeagleBone to play audio. For this, when the user
moves the BBG and Zen cape in direction, it will trigger a sound.
Detect significant accelerations in each of the three axis (X: left/right, Y: away/towards, Z:
up/down) and have each play a different sound, one for each axis.

You may assume the board is always held parallel to the ground (not on its side or
upside down).
See this video for an explanation: https://www.youtube.com/watch?v=JmDie3wQgfk
The sound generated in response to the accelerations is in addition to any sound
generated by the drumbeat modes.

For example, when the user “drums” the BeagleBone vertically (Z), have it play a base
drum. For each other axis, use a different sound.
It must be reasonably possible for a user to get just one play-back of sound per “air-
drumming”. Therefore debouncing is likely required.

If the user shakes the board quickly, however, its OK to playback multiple occurrences
of the sound.
User should be able to air-drum at least 120BPM without issue. (i.e., you cannot use
large debounce times).

3.2.3 Hints
Make at least one separate C module (or C++ class, Rust module/crate, ...) to handle the
Zen-cape input. May be better to have multiple modules.

You may reuse modules you wrote for previous assignments during this offering of
CMPT 433.
Your app must configure your board, as necessary, such that it runs fine after the BBG is
rebooted. This may involve configuring GPIO pins or I2C commands.

If needed, you may need to wait ~330ms after exporting a GPIO pin before using it.
On a separate thread, continually read the state of the joystick and accelerometer.

A reasonable start is to poll these inputs around every 10 ms (100 Hz). This should be
fast enough to capture user inputs (such as accelerometer values).

You'll want to debounce all joystick and accelerometer actions:
For example: If an action has to be triggered for joystick up, then don't allow it to trigger
another action for some time (say 100ms).
Do the same for each direction on the joystick, and each axis on the accelerometer. You
may need different debounce “timers” for each action.
Think through how you can avoid copy-and-pasting large amounts of code 8 times!

If you have a Zen Green (V1.0), then the accelerometer is an MMA8452Q by Freescale
Semiconductor.

The part is connected to hardware I2C bus I2C_1 at address 0x1C.
See the part's datasheet on the course website for details, such as:

Chapter 6 describes the registers the device exposes. I recommend looking at:
CTRL_REG1, OUT_X_MSB, OUT_X_LSB (and the same for Y and Z)
Note device must first be changed to the Active mode before it returns valid data.
Reading a single register at a time seems to always return 0xFF (cause unknown).
So, read all the bytes in one operation (see next point). Also, the first byte read
during any read operation seems to be all 0xFF, so don't trust the first byte.

Generated Feb 27, 2024, 11:09 PM Page 5/11 Dr. Fraser ©

https://www.youtube.com/watch?v=JmDie3wQgfk

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

If you read more than one bytes in a single read action, the device will automatically
step through the registers. For example, reading 7 bytes starting at address 0x00 will
return data for registers 0x00 through 0x06 inclusive. Hence it is not necessary to
perform 7 different one byte reads.
I recommend not using any of the part's filtering/debouncing options, as it is simpler
to get the hardware working without it. Plus it is easier to debug software than
hardware settings. However, you are welcome to use any of the features it provides.

If you have a Zen Red (V1.1), then the accelerometer is an LIS331DLH by ST
Microelectronics

The part is connected to hardware I2C bus I2C_1 at address 0x18.
See the part's datasheet on the course website for details, such as:

Chapter 7 describes the registers the device exposes. I recommend looking at:
WHO_AM_I, CTRL_REG1, OUT_X_L, OUT_X_H (and the same for Y and Z)
First, enable the chip using CTRL_REG1. You’ll want to set it to power mode 1, and
enable Z, Y, and X.
Next, I suggest you read the chip and see if you can get the expected value back on
the WHO_AM_I register.
Finally, notice that the X, Y, and Z (high and low byte) registers are all in a row. You
can do a multi-byte I2C read, starting at the lowest address number, to read all the
registers in one operation. To make this work, you must add 0x80 to the register
address of your read. Doing so reads the same address as otherwise but enables the
auto-increment feature on the device’s I2C address.
I recommend not using any of the part's filtering/debouncing options, as it is simpler
to get the hardware working without it. Plus it is easier to debug software than
hardware settings. However, you are welcome to use any of the features it provides.

General accelerometer hints:
First get the part working using command-line I2C tools. Then write your C program to
read/write the I2C registers.
The accelerometers returns accelerations in terms of G forces. And since there's already
1G pulling down all the time, you may want to use different a threshold for the Z axis.
Given an array of bytes named buff[], and the index of X's MSB and LSB (where x is
a 16 bit value), you can create a 16-bit integer of those values using:

int16_t x = (buff[REG_XMSB] << 8) | (buff[REG_XLSB]);
Note that the 4 lsb of the above value will be 0's because the device left-aligns its 12
bits of accurate data into the 16 bit value.

Generated Feb 27, 2024, 11:09 PM Page 6/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

3.3 Text Display
Once per second, print to the console the following:

Beat mode (its number), format such as “M0”
Tempo, format such as “90bpm”
Volume, format such as “vol:80”
Time between refilling audio playback buffer

Each time your code finishes filling the playback buffer, mark the interval/event.
Format: Audio[{min}, {max}] avg {avg}/{num-samples}

Time between samples of the accelerometer
Each time your code reads the accelerometer, mark an interval/event.
Format: Accel[{min}, {max}] avg {avg}/{num-samples}

Sample output:
M0 90bpm vol:80 Audio[16.283, 16.942] avg 16.667/61 Accel[12.276, 13.965] avg 12.998/77

You may use the provided intervaltimer.h/.c code on the course website to mark each
interval/event (record the timestamp), and to get the statistics based on these timestamps. You’ll
need to update/add your own enum to the .h file for the different periods you want to track.

You may output additional text to the terminal in response to events like changing
modes/volume, or detecting an acceleration triggering a drum sound.

3.4 UDP Interface
Create a UDP interface which allows control of the beat box application. You'll use this interface
in your NodeJS server (next section). I am not specifying what your interface should be; you get
to design it any way you like.

You may not use my sample assignment solution, but you may use any example code, or your
assignment solutions as a base.

It must support:
Changing the drum-beat mode directly (i.e., jumping from a standard rock beat to no beat).
Changing the volume.
Changing the tempo.
Playing any one of the sounds your drum-beats use.
Shutting down the program gracefully

See the next section's requirements when designing your interface.

3.5 Memory Testing
We will run Valgrind on your code to look for incorrect memory accesses, and it must free all
allocated memory (none lost, none still reachable).

You can ignore all “leaks” that seem to be coming from libasound.so.

While Valgrind-ing, your application's audio may stutter terribly and print errors from the
snd_pcm_writei() call (“AudioMixer: writei() returned..”). These may be ignored

Generated Feb 27, 2024, 11:09 PM Page 7/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

4. Node.js Web Interface

4.1 Upgrade Node Version
Execute the following commands on both the host and target to upgrade node to the latest
stable version (using the tool named ‘n’). This ensures all systems are running the same version.

sudo apt update
sudo apt install npm # Installs ~500MB on BBG
sudo npm cache clean -f
sudo npm install -g n
sudo n stable # Updates Node.js to v20.11 (Feb 2024)

Then exit your shell and start a new one in order for it to call this updated version of Node.js.

4.2 Website Requirements
1. Must have a clear, well laid out interface. You’ll likely need floating of elements, such as

floating a div for the status to the right. Other layouts possible, must be at least as “nice”
(or complex) as sample.

2. Allow the user to directly select what beat to generate (none, standard rock, etc.).
• Display what the current mode is.
• Must update within 1s whenever the mode changes (either due to the web page or via

the Zen cape input).
3. Allow the user to change the volume; support at least +/- buttons to change volume by 5.

• Display the current volume as either a number or a graphic.
• Must update display within 1s of the volume changing (such as user changing volume

with Zen cape).
4. Allow the user to change the tempo; support at least +/- buttons to change by 5 BPM.

• Display the current BPM as either a number or a graphic.
• Must update display within 1s of the tempo changing (such as user changing tempo

with Zen cape).
5. Allow the user to directly trigger the playback of each of the sounds found in your drum-

beats. For example, clicking a “Base Drum” button.
6. Allow the user to terminate the C/C++/Rust program (must gracefully shutdown).
7. Display the device's uptime in hours, minutes, and seconds (found via /proc/uptime).

Update this every ~1s.
8. Display errors:

• Create a box to display errors.
• You must display meaningful error messages for at least the following errors:

• NodeJS server is no longer running on the target (i.e., NodeJS server does not
reply to a web-browser command within 1s). This assumes you have loaded the
web page already, and then after that the connection fails.

• beatbox C/C++ application not running (i.e., commands being relayed from the
NodeJS server to the application generate no reply).

Hints for Error Messages
• Hide this box (a div likely) initially when the page is loaded.
• When the server detects any error, have it send the client an error message.

Generated Feb 27, 2024, 11:09 PM Page 8/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

• When the client receives the error message, put the text in the “error-text” element and
show the error-box.
• When the error has cleared, automatically hide the error box within at most 10

seconds.
• If using timers, be careful to clear any unneeded timers least they remain active

and unexpectedly show/hide boxes.

Figure 2: Sample screenshot of web page when it initially loads up.

Generated Feb 27, 2024, 11:09 PM Page 9/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

Figure 3: Sample image when an error is detected. Your error message need not match this.

4.3 Website Server Side Requirements
1. Must be written using Node.js.
2. Must be served from the target.
3. Support connections via HTTP on port 8088.
4. Relays commands between the client web browser and the C/C++/Rust beat-box app.
5. Read device's current up-time (found via /proc/uptime).

4.4 Optional Hints
Change your UDP protocol as needed to make it easy to write the web interface.

For example, each command should generate some reply to indicate it was received, and
so system can detect when the application is not running.

For the error box:
Use a <div> for the error box; give it an ID like “error-box”
Use CSS to hide the error box initially:
#error-box { display: none;}
Show the error box in JavaScript code with:
$('#error-box').show();
Hide it with:
$('#error-box').hide();

If using <input> elements to show the volume and tempo then make them read-only:
<input type="text" id="volumeid" value="???" size="3" readonly/>

Generated Feb 27, 2024, 11:09 PM Page 10/11 Dr. Fraser ©

Assignment 3: Beat-Box CMPT 433 with Brian Fraser

5. Deliverables
Submit the items listed below in a single ZIP file to CourSys: https://coursys.sfu.ca/

1. as3-beatbox.tar.gz
Compressed copy of source code and build script (Makefile).

Archive must include all necessary files to build your application, deploy the Node.js
server, and the wave files. Hint: Compress the as3/ directory with the command
$ tar cvzf as3-beatbox.tar.gz as3

Since the assignment can be done individually or in pairs, if you are working individually you'll
still need to create a group in CourSys to submit the assignment.

Remember that all submissions will automatically be compared for unexplainable similarities
from both this semester, and previous semesters!

5.1 Informal Milestones
How to start

If you want to work with a partner, start looking for one!
Follow the guides to get started:

Audio guide to be able to play sound
Setup your CMake project (for C/C++) to link with ASLA library
Work through getting the accelerometer working. No guide is provided for the device,
so you’ll need to work directly with the datasheet.

Read all sections of the assignment. Design HAL modules. Think about what modules
your application will have.
Think about the application design. How will you generate a rock beat? How will you
handle playing additional sounds in response to the accelerometer or UDP message?
Think about how you will shutdown the application correctly.
Get the low-level audio mixing routines working smoothly. Start with a simple main()
playing the same sound each second to ensure it works smoothly.

Half done
Low level audio playback working reliably.
High-level module plays a drum beat.
Perhaps also have a C program that can read the accelerometer.

Final checks
Review the learning objectives for this assignment (see webpage).
Ensure your Node.js webpage can control the app. Ensure that changes in state due to the
joystick (such as volume up) show up automatically on the web page within 1s.
Double check your final ZIP file for correctness! No last minute refactoring bugs!

Generated Feb 27, 2024, 11:09 PM Page 11/11 Dr. Fraser ©

https://coursys.sfu.ca/

	1. Drum-Beat Info
	2. Folder Structure
	3. Beat-Box
	3.1 Audio Generation
	3.2 Required Zen Cape Input Controls
	3.2.1 Joystick Requirements
	3.2.2 Accelerometer Requirements
	3.2.3 Hints

	3.3 Text Display
	3.4 UDP Interface
	3.5 Memory Testing

	4. Node.js Web Interface
	4.1 Upgrade Node Version
	4.2 Website Requirements
	4.3 Website Server Side Requirements
	4.4 Optional Hints

	5. Deliverables
	5.1 Informal Milestones

