
Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

Assignment 2: Light Dip Detector
Submit deliverables to CourSys: https://coursys.sfu.ca/
This assignment may be done individually or in pairs; marked identically. Do not give
your work to students in other groups, do not copy code found online.

Post general questions to the course discussion forum on Piazza.
Ask questions specific to your solution as private messages on Piazza

See the marking guide for details on how each part will be marked.
Do not give your work to another student, do not copy code found online, and do not post
questions about the assignment online other than the course forum. See website for
guidance on using AI tools.
If you have previously taken the course, you may not re-use your previous solution.

1. Write "light_sampler" Program
Write a C, C++, or Rust program named light_sampler which runs on the target to read the
current intensity of light in the room. It will:

Use a light sensor to read the ambient light level in the room
Use the Zen cape’s 2-character (14-segment display) to display the number of dips in the
light intensity seen in the previous second.
Use the Zen cape's potentiometer to control how fast an LED blink (using PWM). This
LED shines on the light-level sensor.
Display some information each second to the terminal.
Listen to a UDP socket and respond to commands

Your program must:
Build using CMake (or similar if using Rust).
Use good modular design with at least four (4) modules (i.e., modules with a .h and .c file
and a coherent interface to its functionality)1. You may have significantly more! For C, all
functions should be internal linkage or external linkage as best fits their purpose;
public/private in C++ or Rust.
Have a HAL layer or directory which separates lower-level hardware access modules.

Think of this assignment as a number of mini-tasks put together:
Wiring up some discrete parts to the BeagleBone: light-level sensor and an LED
Analog to digital (A2D) reading (potentiometer and light sensor)
Output on a 14-segment display using I2C
PWM to control an LED
UDP networking
Use a provided module to analyze the sampling speed of your program.
Threads and thread synchronization

See last page of assignment for suggestions on getting started, and checking your progress.

1 Assignment directions are written for C. If using Rust/C++ you must adapt requirements the best way you can.

Generated Feb 4, 2024, 11:28 PM Page 1/10 © Brian Fraser

https://coursys.sfu.ca/

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

1.1 Sampling Light Levels
In a separate thread (using pthreads), continually sample the light level in the room:

Use the provided guide and electronics in your kit to wire up the light sensor to the BBG.
Use the A2D to read the light sensor’s voltage on in_voltage1_raw (P9, pin 40).
All samples taken during one second are saved into a history.
The program must store, analyze, and provide access to the previous second’s samples and
statistics1.
Sleep for 1ms between samples.
Count the total number of light samples the program has read since it started.

Independent of the history, compute the current average light level.
Compute this average using exponential smoothing over all light samples.

Weights the previous average at 99.9%.
Hint: Recompute this value each time a new sample point is read. You only need the
previously calculated average value and the latest sample. It has nothing to do with the
samples stored in the history. Make sure you set it correctly on the first sample.

Hints (optional, but recommended):
Your module which samples the light levels should likely have functions to:

Start the sampling thread (done once at startup, such as an init() function).
Stop the sampling thread (done once at program end, such as a cleanup() function).
Encapsulate the sample buffer and all changes to it inside the module.

You can decide how to represent light values (raw A2D readings, or voltages).
You do not need to convert to lux (luminosity).

Provide access to the history. The history is the samples taken during the previous 1s.
This is used by the UDP networking code and light level analysis code (later).

Provide the current average (filtered with exponential smoothing) light level.
Make sure that all parts of your code are thread-safe. Consider what data will be used
outside of the sampling thread (and how). How can you synchronize access?

Consider which modules and threads will be reading/changing the memory and
variables.
For modules that need a thread, have that module create a thread and manages
interactions with its data via accessor/mutator functions. Make these functions
lock/unlock the necessary mutex.
Big Hint: Here is a possible .h file interface you may use. You may use this exactly,
ignore it completely, or modify it in any way. Notice how it internalizes all use of the
background thread, isolating the rest of the code from having to worry about threads.

Use the provided hardware checking app to ensure your light sensor is wired correctly.

1 The idea is to store the previous second’s data in the history, rather than to require that the application always
provide access to all samples between the present moment and one second ago. Since the app can work with the
“previous” second, you can once per second copy/move the samples that have been collected from the current buffer
into the history buffer. All analysis and print-out features can then use this previous second of data.
This feature should reduce the amount of work you need to do because you don’t have to write a circular buffer.

Generated Feb 4, 2024, 11:28 PM Page 2/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

Generated Feb 4, 2024, 11:28 PM Page 3/10 © Brian Fraser

// sampler.h
// Module to sample light levels in the background (uses a thread).
//
// It continuously samples the light level, and stores it internally.
// It provides access to the samples it recorded during the _previous_
// complete second.
//
// The application will do a number of actions each second which must
// be synchronized (such as computing dips and printing to the screen).
// To make easy to work with the data, the app must call
// Sampler_moveCurrentDataToHistory() each second to trigger this
// module to move the current samples into the history.

#ifndef _SAMPLER_H_
#define _SAMPLER_H_

// Begin/end the background thread which samples light levels.
void Sampler_init(void);
void Sampler_cleanup(void);

// Must be called once every 1s.
// Moves the samples that it has been collecting this second into
// the history, which makes the samples available for reads (below).
void Sampler_moveCurrentDataToHistory(void);

// Get the number of samples collected during the previous complete second.
int Sampler_getHistorySize(void);

// Get a copy of the samples in the sample history.
// Returns a newly allocated array and sets `size` to be the
// number of elements in the returned array (output-only parameter).
// The calling code must call free() on the returned pointer.
// Note: It provides both data and size to ensure consistency.
double* Sampler_getHistory(int *size);

// Get the average light level (not tied to the history).
double Sampler_getAverageReading(void);

// Get the total number of light level samples taken so far.
long long Sampler_getNumSamplesTaken(void);

#endif

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

1.2 Listening to UDP
Listen to port 12345 for incoming UDP packets (use a thread). Later sections described some
values. Treat each packet as a command to respond to: reply back to the sender with one or more
UDP packets containing the “return” message (plain text).
Accepted commands

help
Return a brief summary/list of supported commands.

?
Same as help

count
Return the total number of light samples take so far (may be huge, like > 10 billion).

length
Return how many samples were captured during the previous second.

dips
Return how many dips were detected during the previous second’s samples.

history
Return all the data samples from the previous second.
Values must be the voltage of the sample, displayed to 3 decimal places.
Values must be comma separated, and display 10 numbers per line.
Send multiple return packets if the history is too big for one packet.

You can assume that 1,500 bytes of data will fit into a UDP packet. This works across
Ethernet over USB.
No single sample may have its digits split across two packets.

stop
Exit the program.
Must shutdown gracefully: close all open sockets, files, pipes, threads, and free all
dynamically allocated memory.

<enter>
A blank input (which will actually be a line-feed) should repeat the previous command.
If sent as the first command, treat as an unknown command.

All unknown commands return a message indicating it's unknown.
Error Handling

You do not need to do extensive error checking on the commands. For example, it is fine to
return the help message for the command "help me now!"
Lower case commands must be accepted; optional to make it case insensitive.
No command should be able to crash your program ("stop" will stop it; not crash it).

Testing
Use the netcat (nc) utility from your host:
(host)$ netcat -u 192.168.7.2 12345
To exit netcat on the host, you'll have to press Control-C ("stop" only kills the program
on the target). Or, press enter a couple times when it is not connected to a server (the target)
for netcat to exit.

Sample output on the host via netcat
Commands sent from host are shown here in bold-underlined for ease of reading. The
history output was trimmed to fit the page.
The “just pressed enter” is added here; it’s not part of the actual output.
The history output has 20 numbers per line (word-wraps in this document).
Your output need not exactly match the sample, but it must have the same elements.

Generated Feb 4, 2024, 11:28 PM Page 4/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

brian@PC-debian:~$ netcat -u 192.168.7.2 12345
help

Accepted command examples:
count -- get the total number of samples taken.
length -- get the number of samples taken in the previously completed
second.
dips -- get the number of dips in the previously completed second.
history -- get all the samples in the previously completed second.
stop -- cause the server program to end.
<enter> -- repeat last command.
?

Accepted command examples:
count -- get the total number of samples taken.
length -- get the number of samples taken in the previously completed
second.
dips -- get the number of dips in the previously completed second.
history -- get all the samples in the previously completed second.
stop -- cause the server program to end.
<enter> -- repeat last command.
count
samples taken total: 9670
count
samples taken total: 11589

<just pressed enter>
samples taken total: 12343
length
samples taken last second: 549

<just pressed enter>
samples taken last second: 552
dips
Dips: 21
history
1.383, 1.362, 1.342, 1.311, 1.298, 1.288, 1.280, 1.265, 1.347, 1.491,
1.531, 1.556, 1.567, 1.577, 1.584, 1.587, 1.588, 1.589, 1.591, 1.593,
1.594, 1.593, 1.559, 1.515, 1.470, 1.440, 1.405, 1.380, 1.360, 1.343,
1.318, 1.300, 1.291, 1.285, 1.272, 1.252, 1.466, 1.519, 1.550, 1.564,
1.573, 1.580, 1.585, 1.587, 1.589, 1.590, 1.593, 1.593, 1.593, 1.586,
1.537, 1.497, 1.453, 1.418, 1.390, 1.365, 1.349, 1.328, 1.306, 1.291,
1.286, 1.277, 1.258, 1.425, 1.515, 1.546, 1.562, 1.575, 1.580, 1.586,
1.588, 1.589, 1.590, 1.593, 1.593, 1.594, 1.588, 1.538, 1.494, 1.465,
1.432, 1.399, 1.378, 1.361, 1.339, 1.314, 1.298, 1.292, 1.284, 1.272,
1.279, 1.457, 1.521, 1.550, 1.565, 1.575, 1.580, 1.584, 1.589, 1.590,
1.592, 1.594, 1.593, 1.593, 1.563, 1.506, 1.476, 1.438, 1.406, 1.374,

... trimmed ...
1.354, 1.331, 1.308, 1.297, 1.287, 1.278, 1.260, 1.374, 1.495, 1.534,
1.556, 1.568, 1.578, 1.584, 1.587, 1.588, 1.589, 1.593, 1.593, 1.593,
1.592, 1.557, 1.515, 1.468, 1.438, 1.404, 1.380, 1.361, 1.342, 1.316,
1.300, 1.292, 1.284, 1.272, 1.251, 1.466, 1.519, 1.549, 1.564, 1.574,
1.580, 1.584, 1.588, 1.589, 1.590, 1.593, 1.593, 1.594, 1.586, 1.537,
1.498, 1.451, 1.418, 1.390, 1.369, 1.352, 1.323, 1.303, 1.295, 1.286,
1.277, 1.257, 1.408, 1.504, 1.542, 1.559, 1.570, 1.578, 1.585, 1.587,
1.589, 1.591, 1.593, 1.593, 1.593, 1.593, 1.541, 1.490, 1.455, 1.420,
1.388, 1.371, 1.353, 1.329, 1.303, 1.295, 1.286, 1.275, 1.255, 1.425,
1.510, 1.545, 1.564, 1.573, 1.580, 1.585, 1.588, 1.589, 1.590, 1.593,
1.594, 1.593, 1.589, 1.537, 1.498, 1.462, 1.429, 1.396, 1.375, 1.356,

stop
Program terminating.

Generated Feb 4, 2024, 11:28 PM Page 5/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

1.3 Analyze History for Light Dips
Each second, the program must analyze the light samples that were captured by during the
previous second (the history). It must count the number of dips in the light level that are revealed
by the samples during that second. A dip in light level can be caused by blocking the light to the
sensor for a brief moment (such as waving your hand across over top of the board). The number
of light dips found in the previous second’s data is reported on the terminal (section 1.4), the 14-
seg display (section 1.6), and via UDP (section 1.2).

A dip is when the light level drops below a threshold (a certain amount below the current
average light level).

Another dip cannot be detected until the light level returns above the threshold.
A dip can be detected when the voltage is 0.1V or more away from the current average
light level. The current average light level is computed using exponential smoothing
(section 1.1).
Carefully consider if a lower light level leads to smaller voltages, or larger voltages.
Use hysteresis of 0.03V to prevent re-triggering a dip incorrectly if there is some noise
in the readings.

i.e., The light level must drop by 0.1V to trigger a dip.
It cannot retrigger another dip until the light level first rises to 0.07 below the average
light level (or higher).
Then if the light-level drops back below 0.1V it retriggers a dip.

Testing hint:
Wave your hand over the board once, interrupting the light, and it should detect 1 dip.
Wave back and forth; it should detect 2 dips, and then count down.
Wave fast and see!
Install a strobe light program on your phone! Section 1.5 adds a flashing LED to test it.

1.4 Terminal Output
Each second, print the following to the terminal (via printf()). Use a fixed number of
characters for each value so the alignment does not change as values change.

Line 1:
light samples taken during the previous second
Raw value from the POT, and how many hertz (Hz) this is for the PWM (section 1.5)
The averaged light level (from exponential smoothing), displayed as a voltage with 3
decimal places.
The number of light level dips that have been found in samples from the previous second
Timing jitter information (provided by periodTimer.h/.c) for samples collected
during the previous second (section 1.7)

Minimum time between light samples.
Maximum time between light samples.
Average time between light samples.
Number of times sampled
Format:
Smpl ms[{min}, {max}] avg {avg}/{num-samples}

Line 2:
Display 20 sample from the previous second.
These values must be as evenly spaced across the collected samples as possible (for
example, if you have ~100 samples collected, display every ~5th sample). If there are
less than 20 samples from the previous second, display all the values.
Format: {sample number}:{value}

Generated Feb 4, 2024, 11:28 PM Page 6/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

Hint: Use a thread to do the analysis and print these values and then sleeps for 1s; or combine
these tasks with another module that runs every second.

Sample output
#Smpl/s = 547 POT @ 578 => 14Hz avg = 1.411V dips = 15 Smpl ms[1.361, 6.433] avg 1.848/547
 0:1.330 55:1.586 109:1.495 164:1.251 219:1.596 274:1.317 328:1.581 383:1.500 438:1.250 492:1.596
#Smpl/s = 552 POT @ 560 => 14Hz avg = 1.432V dips = 15 Smpl ms[1.361, 5.197] avg 1.829/552
 0:1.274 55:1.594 110:1.380 166:1.557 221:1.598 276:1.256 331:1.593 386:1.334 442:1.582 497:1.487
#Smpl/s = 554 POT @ 497 => 12Hz avg = 1.435V dips = 13 Smpl ms[1.367, 6.718] avg 1.825/554
 0:1.495 55:1.596 111:1.183 166:1.403 222:1.596 277:1.423 332:1.248 388:1.590 443:1.531 499:1.273
#Smpl/s = 549 POT @ 122 => 3Hz avg = 1.361V dips = 4 Smpl ms[1.460, 6.141] avg 1.848/549
 0:1.458 55:1.189 110:1.181 165:1.358 220:1.181 275:1.301 329:1.175 384:1.598 439:1.177 494:1.165
#Smpl/s = 550 POT @ 0 => 0Hz avg = 1.276V dips = 1 Smpl ms[1.462, 7.070] avg 1.842/550
 0:1.161 55:1.160 110:1.159 165:1.163 220:1.171 275:1.167 330:1.156 385:1.153 440:1.150 495:1.150
#Smpl/s = 549 POT @ 454 => 11Hz avg = 1.313V dips = 7 Smpl ms[1.453, 4.708] avg 1.839/549
 0:1.186 55:1.179 110:1.300 165:1.366 220:1.174 275:1.333 329:1.342 384:1.338 439:1.330 494:1.176
#Smpl/s = 549 POT @ 440 => 11Hz avg = 1.347V dips = 9 Smpl ms[1.454, 6.447] avg 1.842/549
 0:1.239 55:1.224 110:1.566 165:1.589 220:1.595 275:1.568 329:1.190 384:1.575 439:1.195 494:1.375
#Smpl/s = 550 POT @ 442 => 11Hz avg = 1.390V dips = 12 Smpl ms[1.404, 5.246] avg 1.839/550
 0:1.268 55:1.240 110:1.372 165:1.580 220:1.594 275:1.597 330:1.598 385:1.462 440:1.338 495:1.273

1.5 POT controlling LED via PWM
Use the Zen cape's potentiometer (POT) to select the frequency at which to flash the LED.

POT Reading
Ten times per second, read the Zen cape's potentiometer (via analog to digital: A2D).
This will give you a number between 0 and 4095 (4k different values) inclusive.

PWM LED Control
Using the provided guides, wire up a discrete LED (one of the lose components).
Position the LED pointing at (or at least parallel to) the light sensor so that it sees the
LED’s light. Any of the 2-lead (two wires) LEDs should be fine.
Drive the LED using PWM (pulse width modulation),
Compute the desired PWM frequency by dividing the raw A2D reading of the Zen
cape’s POT by forty (40). Update the PWM frequency each time the POT is read.
If the PWM is already set to the desired frequency, do not re-set it because this will
cause a brief interruption to the LED’s flashing. i.e., if it’s at 10Hz and you are setting it
to 10Hz, do nothing.

1.6 14-Seg Display via I2C
Use the Zen cape's two digit 14-segment display to display the number of dips that the program
has detected using the samples collected during the previous second.

Display on the 2-digit 14 segment display the number of dips in the previous second.
Update this value once per second.
Display the number in base 10.
If the number to display is greater than 99, display 99 instead (hard to achieve!)

For values < 10, you may prefix with a 0 or a blank.
For example, if the number is 5, you may display either “ 5” or “05”

You must figure out what bits to set for the 14-seg display to show the characters you want.
Consider setting one bit active at a time and recording which segment it lights up.
After you have mapped all the segments to bit patterns, you can then use this to
construct the expected bit-patterns.
Hint: Write a for-loop that turns on the bits one at a time and then waits for user input
to move to the next so you can record what LED segment is turned on.

You may not assume the I2C pins are already configured for I2C use.
Your program should make a call to the config-pin program to control the pin setup
for P9_17 and P9_18, as described in the I2C guide.

Generated Feb 4, 2024, 11:28 PM Page 7/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

1.7 Timing Jitter
The provided periodTimer.h/.c files are a ready-to-use module which supports recording the
timestamps of certain events, and then calculating some statistics about those timestamps.

You may modify these files as needed for recording the timing (see below); however, you may
not use this file to store your light-level samples: it is only for timing.

Expected Usage
1. In periodTimer.h, create your own category of event in the Period_whichEvent

enum. Note that you can use the provided one, and/or create your own.
2. At startup, call Period_init().
3. Each time the event of interest happens in your code, call the Period_markEvent()

function. Pass in the enum for the event you are tracking. The module will record the
timestamp for this event (stored internally).

4. Each time you want the current statistics, call the
Period_getStatisticssAndClear() function for your event. Note that when
called, this function will wipe out the timestamps that it has been storing for this event
(hence not double-counting a time-stamp the next time you call this).

5. When shutting down, call Period_cleanup().

Generated Feb 4, 2024, 11:28 PM Page 8/10 © Brian Fraser

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

2. Debug program "noworky"
The file noworky.c is provided on the course website. This program does not do what its
comments say it will. You must debug it and fix it. The tool gdb will be discussed in class.

Cross-compile the noworky for the target.
Compile using -g option (include debug symbols) in gcc. Recommended flags are:
-Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror

noworky generates the following output
shown on the right.

Use gdbserver and the gdb cross-debugger to
debug noworky.

Do a full debugging session using the gdb
text debugger. Using copy-and-paste, copy
the full text of your debugging session into
as2-gdb.txt. Your debugging session
must show the bug, where it is, and how you
(could reasonably have) found it.
Even if you used a graphical debugger
initially to figure out the bug, you must still
use gdb to re-investigate the problem and
show a full debugging process (not just a
listing on the program and say "There's the
problem!")

Setup a graphical cross-debugger (such as Eclipse or VS Code). Use it to re-debug
noworky in a cross-debugging configuration (target device runs noworky, host runs the
graphical debugger)

Create a screen shot named as2-graphical.png showing the graphical debugger
debugging the program. If using Eclipse, this should show the debug perspective; if
using VS Code show the “Run and Debug” view.
A single screenshot won't show your full debugging session, but it proves that there was
a graphical debugging session, which is good enough for this assignment. Just make the
screen-shot show some representative part of your debugging session.

Correct the bug in noworky.c and comment your change. For example,
// Bug was here: It was doing.... but should be doing....

Hint: The fix is no more than a one word change!
Submit the corrected noworky.c file to CourSys along with the screenshot and trace.

Generated Feb 4, 2024, 11:28 PM Page 9/10 © Brian Fraser

[root@Boardcon bin]# ./noworky
noworky: by Brian Fraser
Initial values:
 0: 000.0 --> 000.0
 1: 002.0 --> 010.0
 2: 004.0 --> 020.0
 3: 006.0 --> 030.0
 4: 008.0 --> 040.0
 5: 010.0 --> 050.0
 6: 012.0 --> 060.0
 7: 014.0 --> 070.0
 8: 016.0 --> 080.0
 9: 018.0 --> 090.0
Segmentation fault
[root@Boardcon bin]#

Assignment 2: Light Dip Detector - V1 CMPT 433 with Brian Fraser

3. Deliverables
Submit the items listed below to the CourSys: https://coursys.sfu.ca

1. as2.tgz
Compressed copy of your project. Delete the build/ folder first so it’s much smaller.

Hint: Compress the as1/ directory with the command like:
(host)$ tar cvzf as2.tgz as2

2. as2-gdb.txt

3. as2-graphical.png

Please remember that all submissions will be compared for unexplainable similarities. Please
make sure you do your own original work; and not copied from GitHub. I have copies of all coed
previously submitted, such as all copies on GitHub, and have a very efficient tool to find
similarities. Please take this opportunity to do great work!

3.1 Informal Milestones
How to start

If you want to work with a partner, start looking for one!
Follow the guides to get started:

I2C to get the 14-seg display working
A2D to read the Zen’s POT
Wiring guide for the light-sensor (A2D)
PWM guide to learn how to control the light. Start with the Zen cape’s buzzer to
learn PWM, then follow wiring guide for the LED connected to the PWM

Read all sections of the assignment. Design HAL modules. Think about what modules
your application will have.
Use the provided hardware test app to ensure light sensor and LED are wired correctly.
Try designing and coding the sections of this assignment one at a time.

When you get the light sampling and UDP working, use the provided Python program
(run on the host) to show a graph of the samples you have collected.

Think about how you will shutdown the application correctly.
Half done

Sampling light levels.
Sending history samples via UDP, checked with Python program.
Maybe also counting dips in the last second of data?

Final checks
Review the learning objectives for this assignment (see webpage).
Complete the noworky debugging.

Double check your final ZIP file for correctness! No last minute refactoring bugs!

3.2 Revision History

V1: initial version

Generated Feb 4, 2024, 11:28 PM Page 10/10 © Brian Fraser

https://coursys.sfu.ca/

	1. Write "light_sampler" Program
	1.1 Sampling Light Levels
	1.2 Listening to UDP
	1.3 Analyze History for Light Dips
	1.4 Terminal Output
	1.5 POT controlling LED via PWM
	1.6 14-Seg Display via I2C
	1.7 Timing Jitter

	2. Debug program "noworky"
	3. Deliverables
	3.1 Informal Milestones
	3.2 Revision History

