
Securing Your Web Application

A Deep Dive into OWASP Top 3
Security Risks

Peeyush Sharma

CMPT 415
Simon Fraser University

Date: April 22, 2023

Abstract

Web applications have become a crucial component of business operations, but this increased
reliance on them has also led to an increase in security vulnerabilities, leaving businesses exposed to
cyber threats. The Open Web Application Security Project (OWASP) Top 10 Web Application Se-
curity Risks list outlines the most common vulnerabilities in web applications. The report analyzes
the top three vulnerabilities, which are Broken Access Control, Injection, and Cross-Site Scripting,
and provides an in-depth analysis of how the HAITI HHA project mitigates these risks.

The report includes recommendations on how to prevent the vulnerabilities, such as implement-
ing access control mechanisms, rate-limiting API and controller access, and using stateful session
identifiers. The report also assesses the HAITI HHA application for Broken Access Control and
finds that it has a robust access control mechanism in place. However, it recommends areas for im-
provement, such as implementing input validation and output encoding, and logging access control
failures.

By understanding and implementing the recommended security measures, organizations can en-
sure the security of their web applications, protect sensitive data from cyber threats, and mitigate
the risks of security breaches.

1. Introduction
Web applications have become an essential tool for
businesses to interact with their customers, employ-
ees, and partners. Increased reliance on web appli-
cations has led to an increase in risk of security vul-
nerabilities. Cybercriminals are always searching for
vulnerabilities they can exploit in web applications
to breach networks, steal sensitive data, or disrupt
services. Therefore, it is essential to take measures
to secure web applications and mitigate the risks that
can lead to security breaches.

The OWASP Top 10 Web Application Security
Risks is a list of the most common web application
vulnerabilities that organizations need to be aware
of. The Open Web Application Security Project
(OWASP) regularly updates this list to reflect the
evolving threat landscape. This report provides an
in-depth analysis of the top 3 OWASP Web Applica-
tion Security Risks and recommends best practices
for mitigating these risks.

By understanding these risks and implementing
the recommended security measures, organizations
can help ensure the security of their web applications
and protect their sensitive data from cyber threats.
Each risk will be tied to project HAITI HHA to see
how the vulnerabilities applies to it and how the
project mitigate these risks. This report would also
assess how if the project uses recommended solutions
and areas of improvement for the application.

2. OWASP top 3 vulnerabilities
Following are the top 3 security risks as per OWASP
Web Application Security Risks.

2.1. Broken Access Control
2.1.1. Overview

With the use of session management, a web applica-
tion can easily respond to different service requests
securely based on its authorized users [5]. A user

− 1 −

Simon Fraser University CMPT 415

can create a session using some sort of authentica-
tion such as username and password. Access control
features ensures the restriction of accessing web re-
sources such as web pages, database tables, etc. and
it is the security configuration for preventing unau-
thorized access from the intruders.

It is evident from the current OWASP list, Bro-
ken Access Control (BAC) has been marked as 1st
rank vulnerability depending on its existence in the
web applications and the adverse consequences [1].
Broken access control has been found in high profile
applications such as IIS and Wordpress [5].

A study conducted found 129 applications vulner-
able to broken access control out of 330 web applica-
tions where the participant sectors were Education,
E-Commerce, Govt, Health and private companies.
The technology used for applications varied among
PHP, Java, and .Net platform [5]. Lack of awareness
about harmful consequences of Broken access control
consequences can be the cause of this as designers
and developers are not aiming for their application
to not be secure.

2.1.2. Recommendations for prevention

Following are some recommendations on how Broken
Access control can be prevented [1] :-

• Implement access control mechanisms once and
re-use them throughout the application, includ-
ing minimizing Cross-Origin Resource Sharing
(CORS) usage.

• Log access control failures, alert admins when
appropriate (e.g., repeated failures).

• Rate limit API and controller access to minimize
the harm from automated attack tooling.

• Stateful session identifiers should be invalidated
on the server after logout. Stateless JWT tokens
should rather be short-lived so that the window
of opportunity for an attacker is minimized. For
longer lived JWTs it’s highly recommended to
follow the OAuth standards to revoke access.

2.1.3. Analysis of HAITI HHA Application -
Broken Access Control

Tests were conducted on our application for broken
access control.

Methodology:

Testing involved the use of four different user roles
to ensure that access was appropriately limited based
on role :-

• User

• Admin

• Head of Department

• Medical Director

During the testing process, attempts were made to
bypass access control checks by modifying the URL,
internal application state, or the HTML page. Ad-
ditionally, direct GET and POST calls were made
to the server using Postman to access APIs without
proper authentication.

Assessment Findings:

• Despite these attempts, the application’s secu-
rity measures held strong, and access was consis-
tently denied with a 401 Unauthorized response
when appropriate authentication was not pro-
vided. These tests served to validate the effec-
tiveness of the access control measures in place
and provide assurance that unauthorized access
to sensitive data is effectively prevented.

• Upon going through the code, the application
has a very strong access control mechanism.
Code snippet in Figure 1 on next page shows
the route defined in an Express application that
handles a POST request to the ’/login’ endpoint.
The route uses a middleware function called ’re-
quireLocalAuth’ to authenticate the user before
processing the request.
Once the user is authenticated, the route han-
dler retrieves the user’s credentials from the re-
quest body and searches for a matching user
in the MongoDB database using the Mongoose
package. If a matching user is found, the user’s
details are converted to a JSON object and a
JSON Web Token (JWT) is generated for the
user.

• All the subsequent requests after logging in re-
quires the above JWT token to be authenticated
along with approriate user role before accessing
any API’s. Code snippet in Figure 2 on next
page represents an Express route that handles
DELETE requests to delete a case study. The
route is mounted on the ’/:id’ endpoint and uses
middleware that requires JWT authentica-
tion and authorization as an Admin or
Medical Director to access the endpoint.

− 2 −

A Deep Dive into OWASP Top 3 Security Risks

• const router = Router ();

router .post (’/login ’,
requireLocalAuth , async (req:
RequestWithUser , res: Response)
=> {

const user = req.body;
const mongooseUser = await

UserCollection . findOne ({
username : user. username });

const jsonUser = await
mongooseUser !. toJson ();

const token = mongooseUser !.
generateJWT ();

res. cookie (’jwt ’, token , {
httpOnly : true });

res
. status (HTTP_OK_CODE)
.json ({ success : true , isAuth :

true , user: jsonUser ,
csrfToken : req.body._csrf })
;

});

Figure 1. Code for Login

• The application also invalidates the JWT token
as per the recommended best practices for pre-
vention. Figure 3 represents an Express route
that handles POST requests to logout a user
and invalidate the JWT token.

Areas of Improvement

• Currently, the application does not log unsuc-
cessful attempts to login or access API’s. It
would be nice to log access control failures and
alert admins when there are repeated failures.

• The application can make use of Rate limiting
API strategy to mitigate the impact of auto-
mated attacks on an application. Rate limiting
is implemented by limiting the number of re-
quests that can be made within a specific time
period. The limit is typically set based on the
application’s usage patterns and the expected
number of requests per user. If a client exceeds
the limit, they are blocked or temporarily denied
access.
In Express, rate limiting can be implemented
using third-party middleware such as ’express-
rate-limit’. This middleware can be used to limit
the number of requests per IP address within a

router . delete (
’/:id ’,
requireJwtAuth ,
roleAuth (Role.Admin , Role.

MedicalDirector),
(req: RequestWithUser , res:

Response , next: NextFunction)
=> {

const caseId = req. params .id;
CaseStudyCollection .

findByIdAndRemove (caseId)
.exec ()
.then ((data: any) => {

if (! data) {
return next(new NotFound (‘

No case study with id
${ caseId } found ‘));

}

return deleteUploadedImage (
data. imgPath);

})
.then (() => res. sendStatus (

HTTP_NOCONTENT_CODE))
.catch ((err: any) =>

next(new InternalError (‘
Delete case study id ${
caseId } failed : ${err }‘)
),

);
},

);

Figure 2. Code for Deleting Case
Studies

specific time period. It can also be customized
to include options such as response headers, er-
ror messages, and white-listed IP addresses.

2.2. Cryptographic Failures
2.2.1. Overview

Cryptographic errors happen when encryption tech-
niques are not used or used incorrectly. Some reasons
for cryptographic failures include but not limited to
[4]:-

• Sensitive information may be transmitted in
clear text over a network or stored in databases
or files in plaintext

• Use of legacy or weak encryption algorithms

• Mismanagement of encryption keys

− 3 −

Simon Fraser University CMPT 415

router .post(
’/logout ’,
requireJwtAuth ,
(req: RequestWithUser , res:

Response , next: NextFunction)
=> {

res. cookie (’jwt ’, ’invalidated -
jwt -token ’);

req. logout ((err) => {
if (err) {

return next(err);
}

});
logger .debug (’User successfully

logged out ’);
res.send(true);

},
);

Figure 3. Code for Logging out a
User

• Use of insecure or default encryption keys or re-
use of compromised keys

Cryptographic Failures has been ranked 2nd as a
security vulnerability based on its existence in the
web applications and the adverse consequences. [2].

2.2.2. Recommendations for prevention

Following are some recommendations on how Cryp-
tographic Failures can be prevented [2] :-

• Classify data processed, stored, or transmitted
by an application. Identify which data is sen-
sitive according to privacy laws, regulatory re-
quirements, or business needs.

• Don’t store sensitive data unnecessarily. Dis-
card it as soon as possible or use PCI DSS com-
pliant tokenization or even truncation. Data
that is not retained cannot be stolen.

• Make sure to encrypt all sensitive data at rest.

• Ensure up-to-date and strong standard algo-
rithms, protocols, and keys are in place; use
proper key management.

• Encrypt all data in transit with secure protocols
such as TLS with forward secrecy (FS) ciphers,
cipher prioritization by the server, and secure
parameters. Enforce encryption using directives
like HTTP Strict Transport Security (HSTS).

2.2.3. Analysis of HAITI HHA Application -
Cryptographic failures

An assessment was conducted on the application in
accordance with the guidelines set by the GDPR and
industry-standard cryptographic best practices.

Methodology:
The assessment covered the following areas:

• Data protection principles: The assessment
evaluated how the application handles personal
data and whether it complies with the GDPR’s
data protection principles.

• Cryptographic mechanisms: The assessment
evaluated the cryptographic mechanisms used
by the application to protect data in transit
and at rest. This included an assessment of the
strength of encryption, key management prac-
tices, and other cryptographic controls.

Assessment Findings:
The assessment revealed the following findings:

• GDPR Compliance: Assessment found that the
application meets the requirements as there is
no personal identifiable information (PII) being
collected in any of the forms. The only instance
where PII was found was in the case studies sec-
tion. However, we assume that HHA has ob-
tained proper permissions from the individuals
involved before highlighting their cases on the
application

• Cryptographic mechanisms: The application
uses HTTP which is an unencrypted protocol
that sends data in plain text format. As a re-
sult the application is vulnerable to eavesdrop-
ping, interception, and modification of the data
in transit. This means that any sensitive data
sent over HTTP can be intercepted and stolen
by attackers. Also, none of the data (except user
password) is encrypted at rest.

Areas of Improvement

• While the application does not collect personal
identifiable information, there should still be
an exercise done to classify all the information
stored in the application and then handle data
according to GDPR compliance measures in the
event that the application does collect such in-
formation in the future. This includes provid-
ing clear and concise privacy policies, obtaining

− 4 −

A Deep Dive into OWASP Top 3 Security Risks

explicit consent for data collection, implement-
ing mechanisms for data subject requests. Ad-
ditionally, for case studies where personal iden-
tifiable information is shared, proper consent
should be obtained from individuals and mecha-
nisms should be built to handle data access and
erasure requests.

• Sensitive data, such as case studies, stored in
the application is not encrypted at rest. There
should be strong encryption mechanisms to pro-
tect data at rest, such as encryption of the
database. This will ensure that even if the data
is stolen, it cannot be accessed without the ap-
propriate decryption keys. Decryption can slow
down the availability of data, so it is necessary
to identify classify data and only encrypt data
that is necessary.

• To address the cryptographic weaknesses, It is
recommended that HTTPS encryption should
be implemented throughout the application.
This would help to protect sensitive data in tran-
sit and mitigate the risk of eavesdropping, inter-
ception, and modification. HTTPS provides a
secure channel between the client and the server,
ensuring that any data transmitted is encrypted
and cannot be read or modified by an attacker.

2.3. Injection
2.3.1. Overview

Injection has been ranked 3rd by OWASP as a secu-
rity vulnerability based on its existence in the web
applications and the adverse consequences [3]. With
the advancement of big data and cloud computing
technologies, NoSQL databases are gaining popular-
ity. Similar to typical SQL injections, NoSQL injec-
tions are simply one of several types of injection at-
tacks [6]. Some reasons for NoSQL injection include
but not limited to [3]:-

• The application does not validate, filter, or san-
itize user-supplied data.

• Application makes use of dynamic queries or
non-parameterized calls without context-aware
escaping.

• Hostile data is used within object-relational
mapping (ORM) search parameters to extract
additional, sensitive records.

• The application directly uses or concatenates
hostile data in SQL or commands, allowing
for malicious code to be executed in dynamic
queries, commands, or stored procedures.

2.3.2. Recommendations for prevention

Following are some recommendations on how Injec-
tion can be prevented:

• Keep data separate from commands and queries
to avoid injection.

• It is recommended to use a safe API that avoids
using the interpreter or provides a parameter-
ized interface. Object Relational Mapping Tools
(ORMs) can also be used.

• Implement server-side input validation to pre-
vent attacks. However, some applications re-
quire special characters.

• Use escape syntax to escape special characters
in any residual dynamic queries.

• Use SQL controls such as LIMIT to prevent
mass disclosure of records in case of an injec-
tion attack.

2.3.3. Analysis of HAITI HHA Application -
NoSQL Injection

An assessment was conducted on the application to
check if the application is vulnerable to NoSQL in-
jection attacks.

Methodology:
The security analysis was conducted using manual

testing which involved examining the application’s
source code to identify any areas where user input
is accepted and processed, and then attempting to
inject malicious input to determine if the application
is vulnerable to NoSQL injection attacks.

Assessment Findings:

• The application uses Mongoose library which
significantly reduces the risk of NoSQL injection
vulnerabilities. Mongoose provides a schema-
based solution for modeling application data
and provides a built-in mechanism for validating
and sanitizing user inputs. Additionally, Mon-
goose supports parameterized queries, which
further reduces the risk of injection vulnerabili-
ties.

• There is no server side validation done on the
input while submitting forms. While Mongoose
can reduce the risk of injection vulnerabilities,
it’s still critical to properly validate and sanitize
user inputs on the server-side. If input valida-
tion is not implemented properly, it can lead to

− 5 −

Simon Fraser University CMPT 415

security issues such as allowing attackers to by-
pass client-side validation and sending invalid
data to the server, or triggering unexpected er-
rors.

Areas of Improvement

• Implement server-side validation: While the
Mongoose library provides some protection
against NoSQL injection, it is still recommended
to implement server-side validation to ensure
that user inputs meet expected data types and
formats. This will help to prevent any potential
security vulnerabilities that may arise from user
inputs that are not properly sanitized.

• Keep the Mongoose library up to date: It is im-
portant to ensure that the Mongoose library is
updated to the latest version to ensure that any
potential security vulnerabilities are addressed.

3. Conclusion
The HAITI HHA project, which is the focus of this
report, underwent tests to ensure that access was
appropriately limited based on the user’s role. The
tests showed that the application had a strong access
control mechanism in place, and the security mea-
sures held strong, consistently denying access with
a 401 Unauthorized response when appropriate au-
thentication was not provided. The application also
required JWT token authentication and authoriza-
tion to access endpoints, which ensured the security
of sensitive data.

Despite the robust security measures, the report
recommended some areas of improvement. For in-
stance, the application could implement input vali-
dation and output encoding to prevent injection at-
tacks. Additionally, logging access control failures
and alerting administrators when appropriate could
help improve the security of the application further.

In conclusion, by understanding the OWASP Top
10 Web Application Security Risks and implement-
ing recommended security measures, organizations
can mitigate the risks of security breaches, protect
sensitive data from cyber-attacks, and ensure the se-
curity of their web applications.

References
[1] A01:2021 – Broken Access Control. url: https:

/ / owasp . org / Top10 / A01 _ 2021 - Broken _
Access_Control/.

[2] A02:2021 - Cryptographic Failures. url: https:
/ / owasp . org / Top10 / A02 _ 2021 -
Cryptographic_Failures/.

[3] A03:2021 – Injection. url: https : / / owasp .
org/Top10/A03_2021-Injection/.

[4] Essohanam Djeki et al. “Preventive Mea-
sures for Digital Learning Spaces’ Security Is-
sues”. In: 2022 IEEE Technology and Engi-
neering Management Conference (TEMSCON
EUROPE). 2022, pp. 48–55. doi: 10 . 1109 /
TEMSCONEUROPE54743.2022.9801945.

[5] Hassan M. Quantitative assessment on broken
access control vulnerability in web applications,
International Conference on Cyber Security and
Computer Science 2018. Oct. 18, 2020.

[6] Sivakami Praveen, Alysha Dcouth, and A S Ma-
hesh. “NoSQL Injection Detection Using Su-
pervised Text Classification”. In: 2022 2nd In-
ternational Conference on Intelligent Technolo-
gies (CONIT). 2022, pp. 1–5. doi: 10.1109/
CONIT55038.2022.9848017.

− 6 −

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://doi.org/10.1109/TEMSCONEUROPE54743.2022.9801945
https://doi.org/10.1109/TEMSCONEUROPE54743.2022.9801945
https://doi.org/10.1109/CONIT55038.2022.9848017
https://doi.org/10.1109/CONIT55038.2022.9848017

	Introduction
	OWASP top 3 vulnerabilities
	Broken Access Control
	Overview
	Recommendations for prevention
	Analysis of HAITI HHA Application - Broken Access Control

	Cryptographic Failures
	Overview
	Recommendations for prevention
	Analysis of HAITI HHA Application - Cryptographic failures

	Injection
	Overview
	Recommendations for prevention
	Analysis of HAITI HHA Application - NoSQL Injection

	Conclusion
	References

