
1

Functional Programming Design Patterns for Object
Oriented Programmers - A Brief Overview

I. INTRODUCTION

The functional programming (FP) paradigm has seemed
to be, for quite some time, a subject mostly reserved
to academic settings and researchers interested in the
intersection of mathematics and computing. Little would be
talked about it among software developers, and languages
would provide little to no native support for FP constructs.
This scenario has been changing, and in recent years, major
recognition and adoption of FP paradigm has been seen on
mainstream languages and frameworks.

On Java JDK 8, released in March 2014, lambdas were
introduced [1]. These are, as described in the release
notes, “instances of single-method interfaces” [1]. On June
2015, ECMAScript 6, Javascript’s standard, defined arrow
functions [2], allowing anonymous functions, or functions
with no associated identifiers, to be passed as arguments.
Although Java and Javascript might refer to these newly
introduced features with jargons appropriate to the paradigms
and features each already supports, both features accomplish
the same, and we will go over such details in subsection III-B.

Newer languages and frameworks went beyond introducing FP
language constructs and embued its paradigms in their design
and native capabilities. React, for instance, is admittedly
inspired by FP paradigms [3]. One clear indication of this
fact is how components are decoupled from states just like
functions in FP should be stateless and should not produce
or be influenced by side-effects. Scala [4] and Kotlin [5], for
instance, provide native support for higher-order functions
(see III-C), a functional programming construct that is often
not supported in “traditional” imperative languages like C.

Given these examples, it should be clear how FP has
become almost ubiquituous among programming languages,
and how, at some point, even a software developer that is
completely oblivious to the notion of FP has already probably
leveraged some of its patterns to achieve something that
otherwise require a convoluted, unsafe, or inefficient solution.
On the other hand, a software developer which understands
FP and its patterns can benefit from its capabilities to achieve
a significantly greater degree of conciseness, safety, and
modularity that cannot be easily achievable otherwise.

In this document, I will start by introducing some basic
theoretical foundations that should foster the reader’s intuition
and allow for later conceptual connections to be made. Next,
we will go over some terminology and functional patterns that
should suffice for the reader to recognize functional patterns

in real code. Finally, I will illustrate usage of functional
patterns in real-world, non-functional code to demonstrate
how its patterns can be used to improve non-functional design
and how FP ultimately manifests itself as a different way of
tackling computational problems.

II. AN OVERVIEW ON COMPUTATIONAL MODELS

A. Semantic and Representation

To begin this section, I ponder a classical question trivial to
computer scientists: what is a computer? Whenever I ask this
question or a similar question to my computing science peers,
I get “a computer is a Turing Machine (TM)” as an answer.
That answer is correct, but it is not the only possible answer.
As we will see, computers are ore precisely defined in terms of
what they are capable of doing rather than what they are, and
this might imply in vastly different approaches that attempt to
capture the notion of computation. Let’s briefly explore that
concept and see how that lead us into functional programming.

As stated in [6], a problem is computable iff it is Turing
computable. Furthermore, a Turing computable problem is a
problem that can be solved by a TM [7]. Let’s disregard the
notion of efficiency here and assume we have infinite time
and space for computing so we can focus on the general
idea of computability. The takeaway here, whatsoever,
is that computable problems is defined in terms of TMs.
This is an important observation for the point I will soon make.

A TM is defined as a device that is capable of carrying
out one among a finite set of instructions at a time whose
instructions involve transitioning among machine states,
moving right or left along an infinitely long one-dimensional
tape, and reading and writing to and from that same tape.
Note that this is an overly simplistic definitions for the sake
of this discussion, and is based off [7], which provides a more
rigorous mathematical definition. This definition does not
depend on any other notion of computers or computations,
and is effectively capable of providing the field of computing
with the necessary axiomatic foundations for expanding our
knowledge on computation. But why is a TM the defining
concept of a computer?

When Turing firts defined a TM, it did not intend to
satisfy any more primitive axioms or conditions which
attempted to define a computer. Rather, the TM attempted
to capture the primitive operations which permitted the
computation of all problems deemed to be computable, and
this definition has managed to withstand the trial of time.
The TM is intuitive and relatable to human’s capability of

2

computing problems. Furthermore, all problems known to be
computable could be computed by TMs, and all problems
known to be uncomputable could not be solved by any TM
[7]. Furthermore, modern-day computers build in accordance
to the von Neumann architecture since the EDVAC were
inspired by the notion of finite universal TMs [8]. All these
reasons seem to explain why TMs are deemed as the de facto
definition of a computer.

Note, in the previous paragraph that the motivation behind the
definition of a TM are problems deemed to be computable,
and without them, the TM would make no sense. In that
manner, even though the definition of a TM does not depend
on any more primitive notion of computers or computation,
it is relevant as effect of its ability to solve problems deemed
to be computable. If the TM was not capable of solving all
problems deemed to be computable, it would likely not be
considered a computer at all. Note that this scenario wouldn’t
cause the definition of a TM to be false. Rather, its operations
would only allow it to solve a subset of the problems deemed
to be computable. But how good is a computer that can’t solve
problems that we know we can compute? Thus, a TM only
makes sense given the existence of such computable problems.

Now, you might have noticed something. I have first
mentioned that computable problems are defined in terms of
a TM, and even though the definition of a TM precedes the
definition of a computable problem, it only makes sense given
the existence of computable problems. This might seem as a
circular definition, but in reality, this is the duality between
semantics and representation. For one to become aware of an
idea, one must first capture it through some definition. At the
same time, a lexical definition only makes sense in light of a
semantically valid idea.

Another example where this phenomenon is clearer is
when we look at Pythagora’s theorem. Without some
representation like Pythagora’s equation, the idea captured
by the mathematical equation is so vague we might not
even be aware of its existence. On the other hand, if the
idea was false, the formula would have no useful meaning.
And even though we tend to represent Pythagora’s theorem
through the classical equation c2 = a2 + b2, many other
equivalent representations exist. Now, we can represent
Pythagora’s theorem through different representations, but
what if we could grasp the notion of computability through
other representations? That’s where Lambda Calculus comes
in.

B. Different Representation of Computers

Lambda Calculus was introduced in the form as we know
it by Alonzo Church as a means to construct a formal system
which could define and reason about mathematical objects
[9]. This formal system defines every mathematical object
in terms of functions, including numbers themselves. It also
defines certain conversion rules (or substitution rules) which
allows derivations to be performed (see section 4.2 on [7] for

details on the definitions of numbers in λ-calculus and on the
conversion rules).

In λ-calculus, one calculates a function on an integer
by applying those conversion rules until a function equivalent
to the resulting integer is produced. Thus, in some sense,
if you have a λ-function, you can “effectively calculate” its
result when applied on an integer by performing a finite
number of conversions. Conversely, Church defines a function
on positive integers to be “effectively calculable” if it can be
defined as a λ-function [6], which implies that it should take
a finite number of steps to arrive at its result. Furthermore,
through the Church-Turing thesis, Allan Turing also proved
that every “effectively caculable” function is also computable,
and vice-versa [10].

Note how each of these terms were defined by their
respective constructs: “Turing computable” are problems that
can be computed by TMs, and “effectively calculable” are
functions that can be λ-defined. In that manner, at the same
time that each term is equivalent, they are independent of
each other and are defined without requiring the other one to
exist.

Similar as to how they are independent, they are also
equivalent in that they capture the same idea, but through
different representations. It could be said that Turing takes
on a more “procedural” approach on computability, perhaps
mimicking human’s computational process, while Church
takes on a more mathematical approach.

Although there have been lots of details on both computational
models that have been left out, a reader interested on the topic
is encouraged to look at the references in this paper look at the
references of these references, and deepen their understanding
about these computational models. Nonetheless, my main
goal behind this theoretical background was not to thoroughly
cover these computational models, but to provide the reader
with a perspective on this duality which constantly manifests
itself through FP. Thus, have in mind that even though we
will cover applications of FP in the context of imperative
OOD, you can think in terms of FP as far as possible until
you reach the primitives upon which your solution depends
on which are defined in terms of imperative programming.

C. Imperative VS Declarative Languages

Now that we covered TM and λ-calculus computational
models, I invite you to think of a procedural language like
C as a realization of a TM. Think of how it describes the
procedures to solve a problems similar to how a TM describes
the procedures to compute a problem, except that C does so at
a higher abstraction level. This similarity is not a coincidence.
The language is intended to replicate the computational model
that inspires it, and a TM is not only a good candidate to be
followed in reason of being the computational model most
computing scientists are familiarized with, but also because
it is the same computational model traditional computers

3

mimick, thus being easier to implement and often having
better performance as a result of a more straightforward
implementation.

A procedural language is a type of imperative language. An
imperative language imperatively describes the computer how
to solve a problem. Object-oriented programming is another
example of an imperative language, but now we have the idea
of objects. On the other hand, FP is a functional language
which declares the program in terms of functions and is one
type of a declarative language. Declarative languages, on the
other hand, declares what needs to be executed, but does not
imperatively describe how [11]. Simiarly to how a procedural
language “realizes” a TM, a functional language “realizes”
λ-calculus.

The major takeaway in the definition and distinction
between these language categories is what kind of syntax
you should expect from each. Idiomatic FP should not
be describing procedures to solve a problem, but rather a
series of function applications that should take on as much
a mathematical format as possible. Of course, this is not
entirely possible since you might find yourself having to define
some primitive language constructs in terms of imperative
programming, or having to perform some computations not
easily expressed mathematically, but these should be avoided
as much as possible, and when cannot be avoided, be clearly
compartimentalized to avoid “contaminating” functional
code by causing side-effects where not expected, impairing
readability or causing other undesirable effects.

III. FUNCTIONAL PROGRAMMING CONCEPTS

A. Immutability

Immutability is key to functional programming, and al-
though it might be difficult to get around, it provides with
several benefits which will later be discussed. Immutability,
as the name says, implies in no variables being able to change
values once defined.

B. Pure Function

Pure functions are functions that, 1) will produce the same
output given the same input, and 2) it has no side-effects.
In this way, functions will be effectively deterministic and
predictable, always producing the same results for the same
inputs [12].

C. Functions as First-Class Citizen

A function is a first-class citizen if it has support for
operations usually associated with values, including 1) being
passed to functions, 2) being returned by functions, and 3)
being assigned to variables [13].

D. Higher-Order Function (HOF)

Higher-order funtions are functions take one or more func-
tions as arguments, or return a function, or both [13].

E. Partial Application

Partial application is a concept of lambda calculus which
defines a function as another functions with partially applied
arguments. For instance, if we have the function sum(a,b)
:= a + b, we can define sum2(a) := sum(a, 2) s.t.
sum2(3) = sum(3, 2) = 3 + 2.

F. Closure

Closure is a concept already present in procedural lan-
guages, but which must be resignified in the context of FP. Clo-
sure is the determination of a variable’s value by the context
of where the functions is defined. For instance, we may have
something like fooProducer(x) := foo() := x, s.t.
fooProducer is a one-argument function that produces
a zero-argument function that returns the value passed to
fooProducer. In this case, foo is able to determine the
value of x because foo and x are both defined in the context
of fooProducer.

G. Currying

Currying is similar to partial application in that it sets the
arguments of a function, but in this case, it does so by setting
one argument at a time by returning a one-argument function
for each argument until all arguments are set. Here are a
few examples for a one, two, and three argument functions
respectively:

• oneArg(x) := x, then oneArgCurry(x) := ()
:= oneArg(x)

• sum(a, b) := a + b, then sumCurry(a) :=
(b) := () := sum(a, b)

• sumAndMult(a, b, c) := (a + b) * c, then
sumAndMultCurry(a) := (b) := (c) := ()
:= sumAndMult(a, b, c)

Note that currying is only possible by leveraging closure.

H. Laziness

Laziness is the execution of a computation only when
strictly necessary and not at the time of definition. For in-
stance, if you define a variable A to be the result of a complex
computation, that computation will not be performed until we
get to a point in the program where we need to know the value
of A, such as for printing it or writing it to the disk. On the
other hand, if A is only used when defining another variable B,
but for whatever reason, B is never needed, then A will never
get evaluated as well [12].

I. Memoization

Is the caching of a function result for a given input so that
it does not need to be recomputed for that same input. The
memoized values should always be the correct ones for pure
functions.

4

J. Tail Recursion

Tail recursion is a technique to run a call of a recursive
function after returning from the calling function. This is often
how imperative-programming loops and iterative functions are
represented in idiomatic FP. This feature is, unfortunately,
not natively supported by most imperative languages which
support FP. Below is one example of a function that computes∑n

i=0 i:

tailSum(i, n, accumulator):
if i == n:

return accumulator
else:

return tailSum(i+1, n, accumulator+i)

sum(n):
tailSum(0, n, 0)

IV. REMARKS ON SKIPPED CONCEPTS

Note that there is more to FP than the concepts here
presented, even though the most used FP techniques in OOD
(from my experience) have been described above. For a more
comprehensive resource on functional patterns, see Greg
Baker’s notes on FP [14] or refer to a FP resource, such as
Haskell’s wiki [15].

Note as well that I have skipped discussions on type
theory [16], a mathematical theory from which FP borrows
many concepts to deal with types in a rigorously defined
manner and cope with certain situations not clearly defined
by λ-calculus alone. I believe that it would be more benefitial
to deepen the discussion on FP in this document rather than
introducing the idea of type theory without being able to
properly expand on it. Nonetheless, I encourage interested
readers to do their own research on the topic as some
understanding from the topic can be very benefitial for the
FP programmer.

V. APPLICATIONS OF FP IN HAITI HOSPITAL PROJECT

Now, I would like to go over some FP applications in a real-
world Typescript OOD project, showing how some FP tech-
niques can be applied even in a project that follows a different
programming paradigm. For the following illustrations, I will
be using code from the Haiti Hospital project [17], commit
c0569944c6820b65a5326811c2d4c4345ef1e63f. I
will try to provide with some snippets of code in this docu-
ment, but the commit should be referred to for further context.

A. Example 1: Partial Appliction of Functions

The Serializer is an experimental class at the time of this
writing which is capable of serializing any object that is
decorated with the @serializable decorator. A decorator
is a function that takes in a constructor and performs some
side-effect with it. Decorator functions are run when the
class is declared, and thus should run before any usage of
that class. The class is located in the common folder of the
front-end.

The way the Serializer works is by mapping class names to
a call to the object constructor, and this mapping is done by
the Serializer which is invoked by the decorator. But here’s
the catch: the constructor the decorator function takes has
no information on its own arguments. This is a problem
for objects that require arguments to be constructed, and
imposing restrictions on the class design is likely to lead to
bad class design, and what would go against the purpose of
a serializer that was meant to be flexible and generalizable.

The solution to this problem was a multi-argument decorator.
The multi-argument decorator takes in a variable number of
arguments and returns a function that takes in a constructor
and performs a side-effect. Thus, it is a higher-order function
that returns a higher-order function. By leveraging closure
and partially applying the constructor, I am able to do the
task. Below is the code for the decorator:

1 e x p o r t f u n c t i o n s e r i a l i z a b l e (. . . a r g s
: any []) {

2 r e t u r n (c o n s t r u c t o r : F u n c t i o n) =>
{

3 l e t o b j e c t S e r i a l i z e r =
O b j e c t S e r i a l i z e r .
g e t O b j e c t S e r i a l i z e r () ;

4 l e t c o n s t r = c o n s t r u c t o r . b ind (n u l l
, . . . a r g s)

5 o b j e c t S e r i a l i z e r .
r e g i s t e r S e r i a l i z a b l e (
c o n s t r u c t o r . name , c o n s t r) ;

6 }
7 }

Note how in line 2 we begin defining an anonymous function
that is going to be returned by the decorator, and in line 4,
inside the anonymous function, the method bind is called,
setting this to be null inside the constructor (there is no
this object prior to its construction) and partially applying
the multiple arguments to the constructor, which can be
passed in the nested function thanks to closure. Through this
partial application, a zero-arguments constructor is returned,
which can be called at any moment to construct an object
with the arguments partially applied. Of course, this design
should only work if the arguments passed to the decorator
correspond to the appropriate arguments that construct an
instance of the object.

This is one example of a feat achieved by FP that probably
could not be achieved otherwise. Partial application of
functions allows developers to, in a way, bring down the
type of arguments to a least common denominator, when
one exists. In this case, the least common denominator of
arguments is zero (no arguments), which can be achieved by
partially applying all arguments, as it is in fact done in the
code above.

5

B. Example 2: Higher Order Functions for Modularity

Another great usage of higher order functions is to
enable behaviour modularity. In all kinds of programming
paradigms, since the traditional procedural programming
paradigm, we are often used to modularizing and structuring
data, but when it comes to behaviour, the further the typical
developer unaware of FP goes it extracting functions on
procedural languages or modularizing methods according to
a hierarchical structure as enabled by OOP.

While method overloading and calls to super-class methods
are enabled by OOP, being able to only modularize behaviour
as far as a hierarchy between types allow is rather limited.
One example where this limitation was clear was in the
design of what is the current class Question, which is
found in the common directory of the front-end.

The Question class is supposed to represent a user-
defined question of some type. The answer of that question
must be of that type, and each particular question might
have further semantic limitations to what is considered a
valid answer. For instance, if the question is “what is your
age?”, then a negative number should not be allowed. The
responsibility of making this validation could be left to the
developer which would use this library, but since questions in
reality do have semantical constraints, the answer validation
was deemed as a part of the responsibilities of the question.

One way to solve this problem is by having Question be
an abstract class and have a method validate that must
be implemented. In that manner, the developer holds the
responsibility to implement the class and define all validation
behaviour inside that method. But I believe that this design
has some issues: 1) I believe in that manner we would be
over-specifying the type of the classes. That is, there would
be a class implementation for each particular validation
behaviour. 2) It is verbose. 3) It would tightly couple the class
to the dependencies used in the validation implementation.

The discussed approach might be the correct approach
in OOD, and if all the considerations I deemed as problems
might be acceptable under that approach, then I cannot help
but to find that such situations are clear shortcomings of
OOD. My solution to this problem is to make Question
accept one or more functions that take in the type of the
answer and return a boolean representing the decision on
whether the answer is valid or not. In that manner, all of the
previous issues are avoided, and the developer only has to
worry about defining the validation behaviour for Question.
Below is the code for Question:

1 e x p o r t a b s t r a c t c l a s s Ques t ion<ID , T>
e x t e n d s Q ue s t i on I t em<ID> {

2 p r i v a t e r e a d o n l y prompt : s t r i n g ;
3 p r i v a t e answer ? : T ;
4
5 p r i v a t e r e a d o n l y v a l i d a t o r s : Array <(

answer ? : T) => V a l i d a t i o n R e s u l t <

unknown>>;
6
7 / / C o n s t r u c t o r , g e t t e r s and s e t t e r s
8
9 p u b l i c r e a d o n l y a d d V a l i d a t o r = (

v a l i d a t o r : (answer ? : T) =>
V a l i d a t i o n R e s u l t <unknown>) : vo id
=> {

10 t h i s . v a l i d a t o r s . push (v a l i d a t o r) ;
11 }
12
13 p u b l i c r e a d o n l y v a l i d a t e = () : Array

<V a l i d a t i o n R e s u l t <unknown>> => {
14 r e t u r n t h i s . v a l i d a t o r s
15 . map ((v a l i d a t o r : (answer ? : T) =>

V a l i d a t i o n R e s u l t <unknown>)
=> v a l i d a t o r (t h i s . answer)) ;

16 }
17 }

Although Question is abstract because I intend this class
to have one implementation per answer and ID type, the
validation behaviour is defined dynamically. Thus, if you
have, for instance, a class NumericQuestion extends
Question<number, number>, then the fact that one
instance of a NumericQuestion determines positive
integers as valid answers while the other instance only allows
even answers does not imply in them being different class
types.

The behaviour modularity provided by higher-order functions
and proper usage of functional patterns is, perhaps, the most
manifestable advantage of FP in imperative programming and
possibly one of the most valuable benefits as it allows code
to be abstracted to an extent not previously achievable.

C. Example 3: Declarative Syntax

In the code of the method searchById(id: ID) of
QuestionTable, we have a clear example of how FP
syntax should look like in OOD. The method in question
searches through a two-dimensional array of TableCells,
a generic class defined as class TableCell<ID, T,
QuestionType extends Question<ID, T>>, and
attempts to look for a QuestionType with the given id.
Below is the code for the method:

1 p u b l i c r e a d o n l y s e a r c h B y I d = (i d : ID) :
Qu es t i on I t e m<ID> | u n d e f i n e d => {

2 r e t u r n t h i s . q u e s t i o n T a b l e
3 . r e d u c e ((q u e s t i o n s 1 , q u e s t i o n s 2)

=> [. . . q u e s t i o n s 1 , . . .
q u e s t i o n s 2])

4 . map (q u e s t i o n C e l l => q u e s t i o n C e l l .
g e t Q u e s t i o n ())

5 . f i l t e r ((q u e s t i o n I t e m) =>
q u e s t i o n I t e m . g e t I d () == i d) [0] ;

6 }

6

Note in the code above 1) the chain-
ing syntax (that is, a syntax like ob-
ject.procedure1(...).procedure2(...)...)
and 2) how a function is anonymously defined as the
arguments for each chaining operation even though we could
have instead passed pre-defined functions as arguments. The
reduce operation defines the application of a function that
iteratively takes in two elements of a list and returns a single
element resulting from their computation until the entire list
is reduced to a single element. The map operations maps
every element of a list to another element (possibly of another
type), and filter filters out objects that do not satisfy a
given predicate (a function that decides between true or false
for any given input of the specifying type).

Note how, although we still have to provide some description
of the operations to be performed, they take a much more
declarative, mathematical syntax that resembles a composition
of functions rather than a step-by-step description of how
to transform the input. This is the expected syntax of FP
in OOP, and one of the biggest advantages is the reduced
cognitive load as you abstract the computational process of
manipulating the data structures and iterating through them
and focus only on the behaviour while also dividing the
transformation into smaller, compartimentalized steps that are
much easier to comprehend than lines of code describing the
how, but not the what of what you are doing.

D. Remarks on Examples

It should be noted that, due current limitations of
the Typescript language and the project, other important
illustrations of FP concepts cannot be here provided. For
instance, Typescript does not provide native support for lazy
evaluation, memoization, persistent data structures or tail
recursion. Although all these features can be implemented
to support FP-like programming, this implies in developers
having to maintain these implementations or having to depend
on modules that implement them, which are options not as
attractive as relying on natively supported operations.

Functional programming also comes along with some
type theory techniques not discussed here (functors, monads,
etc.) which enforce rigorous definitions and type safety, and
although Typescript does a really good job on statically
enforcing some of these constraints, it still lacks some
features, such as pattern matching or guarded expressions
[14].

In light of the lack of support for these operations in
imperative languages, FP cannot be thought of a way to
achieve a completely different programming paradigm.
Rather, it provides with means to achieve higher behaviour
modularity and abstraction that can be implemented on top of
imperative primitives as it has been illustrated in the examples
above.

VI. FINAL REMARKS

In this document, we have discussed the duality between
semantics and representation, how the Turing computational
model and λ-calculus are both ways of performing
computations, and we have briefly compared and contrasted
the languages representing these computational models. We
went through some terminology and functional patterns
and how they can be applied in the context of imperative
programming with a real-world example. It has been a long
discussion, but a lot of important content could not be covered.

The main goal of this document was to convince the
reader that FP, although seemingly restrictive, it does not
limit in any way what can be computed, rather presents a
different and elegant way to compute problems. The treatment
of behaviour as data allows for a level of abstraction to be
reached which allows the developer to focus on what should
be done rather than the how, allowing for more rigorous static
checking, making the code more expressive and reducing the
surface for bugs to occur.

Another important insight that is perhaps more adequate
to a discussion of type theory, but is nevertheless relevant
in FP and should be appreciated is that a program is safer
and more readable when it is more restrictive rather than
more permissive. If permissiveness is good, then strict typing
is bad, and restricted control flow through if , for and
while statements are bad and we are better off with goto
branching. Strictness enforces clear contexts, readability,
exhaustive handling of cases, and valid computational states.
Having errors be statically caught is a valuable capability that
can avoid hours of infuriating debugging.

If the reader is interested in expanding their knowledge
on FP, I invite them to learn a purely functional programming
language like Haskell [18]. Although the language is not
widely used in industry, programming in Haskell will
surely provide solid foundations on functional programming
and ultimately challenge the reader to compute through a
completely different computational model. Ultimately, even
if the reader does not code a purely functional program, the
novel ideas presented by this computational model should
motivate the reader to think through a fundamentally different
perspective from which all kinds of programming paradigms
and problem solving scenarios may benefit from.

REFERENCES

[1] “What’s new in jdk 8,” https://www.oracle.com/java/technologies/javase/
8-whats-new.html.

[2] “262.ecma-international.org/6.0/,” https://262.ecma-international.org/6.
0.

[3] “Design principles – react,” https://reactjs.org/docs/design-principles.
html.

[4] “Functional programming — scala 3 — book — scala documentation,”
https://docs.scala-lang.org/scala3/book/fp-intro.html.

[5] “High-order functions and lambdas — kotlin,” https://kotlinlang.org/
docs/lambdas.html.

[6] B. J. Copeland, “The Church-Turing Thesis,” in The Stanford Encyclo-
pedia of Philosophy, Summer 2020 ed., E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University, 2020.

https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://www.oracle.com/java/technologies/javase/8-whats-new.html
https://262.ecma-international.org/6.0
https://262.ecma-international.org/6.0
https://reactjs.org/docs/design-principles.html
https://reactjs.org/docs/design-principles.html
https://docs.scala-lang.org/scala3/book/fp-intro.html
https://kotlinlang.org/docs/lambdas.html
https://kotlinlang.org/docs/lambdas.html

7

[7] L. De Mol, “Turing Machines,” in The Stanford Encyclopedia of
Philosophy, Winter 2021 ed., E. N. Zalta, Ed. Metaphysics Research
Lab, Stanford University, 2021.

[8] B. J. Copeland, “The Modern History of Computing,” in The Stanford
Encyclopedia of Philosophy, Winter 2020 ed., E. N. Zalta, Ed. Meta-
physics Research Lab, Stanford University, 2020.

[9] J. Alama and J. Korbmacher, “The Lambda Calculus,” in The Stanford
Encyclopedia of Philosophy, Summer 2021 ed., E. N. Zalta, Ed. Meta-
physics Research Lab, Stanford University, 2021.

[10] A. M. Turing et al., “On computable numbers, with an application to
the entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[11] M. Gabbrielli and S. Martini, Programming languages: principles and
paradigms. Springer Science & Business Media, 2010.

[12] “Pure functions, laziness, i/o, and monads - school of haskell
— school of haskell,” https://www.schoolofhaskell.com/school/
starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io.

[13] “Clojure - higher order functions,” https://clojure.org/guides/higher
order functions.

[14] “Cmpt 383 lecture notes,” https://ggbaker.ca/prog-langs/.
[15] “Haskellwiki,” https://wiki.haskell.org/Haskell.
[16] T. Coquand, “Type Theory,” in The Stanford Encyclopedia of Philoso-

phy, Fall 2018 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford
University, 2018.

[17] “drbfraser/hha-haitihospital: System for hospital departments to pro-
vide feedback and information to administrators.” https://github.com/
drbfraser/HHA-HaitiHospital.

[18] “Haskell language,” https://www.haskell.org/.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://clojure.org/guides/higher_order_functions
https://clojure.org/guides/higher_order_functions
https://ggbaker.ca/prog-langs/
https://wiki.haskell.org/Haskell
https://github.com/drbfraser/HHA-HaitiHospital
https://github.com/drbfraser/HHA-HaitiHospital
https://www.haskell.org/

	Introduction
	An Overview on Computational Models
	Semantic and Representation
	Different Representation of Computers
	Imperative VS Declarative Languages

	Functional Programming Concepts
	Immutability
	Pure Function
	Functions as First-Class Citizen
	Higher-Order Function (HOF)
	Partial Application
	Closure
	Currying
	Laziness
	Memoization
	Tail Recursion

	Remarks on Skipped Concepts
	Applications of FP in Haiti Hospital Project
	Example 1: Partial Appliction of Functions
	Example 2: Higher Order Functions for Modularity
	Example 3: Declarative Syntax
	Remarks on Examples

	Final Remarks
	References

