
21-11-26 1

Factory Method Factory Method
Design PatternDesign Pattern

© Dr. B. FraserSlides 16CMPT 373

21-11-26 2

Topics

1) How can we prevent instantiation coupling
when we must instantiate new objects?

21-11-26 3

Let’s make Pizzas!

● We are opening a Pizza restaurant chain!
– Pizza types (Cheese, Veggie, Hawaiian, ...)

– Pizza styles (New York = thin; Chicago = deep dish)

● And, you know:
the requirements are going to change!

21-11-26 4

We have `new` Problems

● The problem with new:
– new creates an object of a concrete type

– new couples our code to a specific concrete class

● We want to depend on general types (“interfaces”),
not concrete types.

● Solutions
– If we need an object so we can do our job,

use..

– If our job is creating new objects, we can’t use DI:
we can..

21-11-26 5

`new` Problem: Code

● What changes when
adding a new pizza type?

– Which design principle
does this violate?

● What type of coupling?
– Couples high-level

(pizza order)
 to low level classes
(Cheese,)

Pizza orderPizza(String type) {
 Pizza pizza = null;
 if (type == "Cheese") {
 pizza = new CheesePizza();
 } else if (type == "Hawaiian") {
 pizza = new HawaiianPizza();
 } else if (type == "Veggie") {
 pizza = new VeggiePizza();
 }
 pizza.prepare();
 pizza.bake();
 pizza.box();
 return pizza;
}

21-11-26 6

Coupling

● ..

Pizza orderPizza(String type) {
 Pizza pizza = null;
 if (type.equals("Cheese")) {
 pizza = new CheesePizza();
 } else if (type.equals("Hawaiian")) {
 pizza = new HawaiianPizza();
 } else if (type.equals("Veggie")) {
 pizza = new VeggiePizza();
 }
 pizza.prepare();
 pizza.bake();
 pizza.box();
 return pizza;
}

21-11-26 7

Factory Method

21-11-26 8

Creating families of objects

● What if we want to support creating NY or Chicago pizzas?
– Ex: Want a NY Cheese, and a Chicago Cheese

21-11-26 9

Creating families of objects (code)

● It’s ugly having PizzaStore instantiating all know styles and
types of pizza.

● What can we do to clean
this up?

Pizza orderPizza(String type, String style) {
 Pizza pizza = null;
 if (style == "NY") {
 if (type == "Cheese") {
 pizza = new NYCheesePizza();
 } else if (type == "Hawaiian") {
 pizza = new NYHawaiianPizza();
 } else if (type == "Veggie") {
 pizza = new NYVeggiePizza();
 }
 } else if (style == "Chicago") {
 if (type == "Cheese") {
 pizza = new ChicagoCheesePizza();
 } else if (type == "Hawaiian") {
 pizza = new ChicagoHawaiianPizza();
 } else if (type == "Veggie") {
 pizza = new ChicagoVeggiePizza();
 }
 }
 pizza.prepare();
 pizza.bake();
 pizza.box();
 return pizza;
}

21-11-26 10

Defer instantiation to derived class

● Encapsulate what Varies:
..
(derived classes).

● Base class
– Does work with Pizza

– Abstract method
to create pizzas:
createPizza()

● Derived class
– Overrides

createPizza()
to instantiate
the correct style
of pizza

21-11-26 11

Factory Method Code

public abstract class PizzaStore {

protected abstract Pizza createPizza(String item);

public Pizza orderPizza(String type) {
Pizza pizza = createPizza(type);
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();
return pizza;

}
}

public class NYPizzaStore extends PizzaStore {

@Override
protected Pizza createPizza(String item) {

if (item == "cheese") {
return new NYStyleCheesePizza();

} else if (item == "veggie") {
return new NYStyleVeggiePizza();

} else if (item == "clam") {
return new NYStyleClamPizza();

} else if (item == "pepperoni") {
return new NYStylePepperoniPizza();

} else
return null;

}
}

Abstract method
(“Factory Method”)

in base class

Override factory method
in derived class

PizzaStore is a
framework for working

with any Pizza

21-11-26 12

Factory Method Idea

● ..
derived classes instantiate different (families of) objects.

– Base class
defines an abstract factory method for creating objects

– Derived classes
overrides factory method to instantiate concrete types

21-11-26 13

Benefits of Factory Method

● Satisfies..
and..

– Adding a new pizza style adds we classes

● High-level class (PizzaStore) depends on an abstract type
(Pizza), not a concrete implementation (NYVeggiePizza)

This is actually a
“Parameterized factory
method”:
The object is created
based on an argument.

Can apply this pattern
without arguments to the
factory method.

21-11-26 14

Exercise: Writing Client Code

● Write client code which
1. creates a NYPizzaStore and
2. orders a Cheese pizza.

– Trace with UML

!See factory.pizzafm.PizzaTestDriver

21-11-26 15

Factory Method Design Pattern

● Factor Method Design Pattern:
– Define an interface for creating an object (abstract function),

but let subclasses decide which class to instantiate.

– Factory Method design pattern..

● .. : all the PizzaStores

● .. : all the Pizza’s

21-11-26 16

Drawbacks

● Parallel Hierarchies
– ..

● Add a VancouverPizzaStore?
Adding a new class to creator hierarchy requires
adding new classes to products

● Add a GreekPizza?
Adding a product class
requires:

– changing all creators

– creating matching
products for each
creator

21-11-26 17

Drawbacks

● Inheritance is fixed at runtime:
– Cannot..

● This is addressed by using the..
– Define a separate object for instantiation (factory object)

– PizzaStore has-a
PizzaFactory
(NYPizzaFactory,...)

– Design Principle:
Favour composition
over inheritance

21-11-26 18

Dependency Inversion

● Without Factory Method
PizzaStore depends on..

● With Factory Method
PizzaStore and all concrete
pizzas depends on..

21-11-26 19

Design Principle: Dependency Inversion

● Design Principle: Dependency Inversion
– ..

Do not depend upon concrete classes.

● Similar to “Code to an interface, not an implementation”
but this is stronger:

– DIP: Have both high and low level classes
..

– “Code to interface” motivated by flexibility:
ability to change object type later.

– DIP motivated by cleaning up the dependencies from
high to low and coupling

● We invert the dependency lines in the UML for PizzaStore

21-11-26 20

Summary

● Creating an object with new
couples code to a concrete class.

● High-level code should not depend on concrete types:
therefore it should not instantiate with new!

– Dependency Injection:
For when we can be handed the objects we need.

– Factory Method:
Delegate instantiation of concrete objects
to a derived class (inheritance).

– Abstract Factory Pattern:
Delegate instantiation of concrete objects
to a factory object (composition).

