
21-11-24 1

Design Principles:
SOLID

© Dr. B. FraserSlides 15CMPT 373

21-11-24 2

Topics

Name your favourite design principle which:

1) Limits for whom we change a file.

2) Adds new code for changes.

3) Makes substitutable objects.

4) Prevents depending on things you don’t need.

5) Prevents high-level policies from depending on
low-level details.

21-11-24 3

Design Principles

● Design principles help us design software which is:
– more understandable

– ..

– more maintainable

● We have seen
– Separate aspects that change

from those that stay the same

– Classes should be
open for extension, but closed for modification

– Program to an interface, not an implementation

– Favour composition over inheritance

21-11-24 4

SOLID

● SRP: Single Responsibility Principle
– Each part of the system must have only one reason to change.

● OCP: Open-Closed Principle
– For a software system to be easy to change, those changes must

be done through adding new code, not changing existing code.

● LSP: Liskov Substitution Principle
– To build a software system from interchangeable parts,

the parts must adhere to a contract which allows the parts
to be interchangeable.

● ISP: Interface Segregation Principle
– Don't depend on things you don't use.

● DIP: Dependency Inversion Principle
– Code that implements high-level policy

should not depend on code that implements low-level details.

(Clean Architecture, Robert C. Martin, 2018; p59)

21-11-24 5

SRP

21-11-24 6

Single Responsibility Principle (SRP)

● ..

– Actor: A group of stakeholders

● Idea
– The contents of a module are there to

satisfy the needs of one group.

(Clean Architecture, Robert C. Martin, 2018)

21-11-24 7

SRP Violation: Multiple Actors

● Actors’ Needs
– calculatePay(): specified by accounting

– reportHours(): specified by human resources

– save(): specified by IT administrators

● Design couples Employee to three different actors
– Imagine a regularHours() function used by calculatePay() and

reportHours()

– If accountants ask for a change to regularHours(), the change
unexpectedly impacts reportHours() and HR

● SRP: Separate the code so that changes needed by one actor
..

21-11-24 8

SRP Solution

● Move each actor’s needs to own
class

– Store data in its own
EmployeeData class

– Create three independent classes
to process the data

● No part of the processing code is
beholden to multiple stakeholders.

21-11-24 9

OCP

21-11-24 10

Open Closed Principle (OCP)

● "A software artifact should be open for extension but
closed for modification."

(Bertrand Meyer. Object Oriented Software Construction, Prentice Hall, 1988, p23)

21-11-24 11

OCP and Checked Exceptions

void printResult() {
 int value = sumValues();
 display(value);
}

int sumValues() {
 return dbGetValue("Sales")
 + dbGetValue("Service");
}

int dbGetValue(String record) {
 return ...;
}

High-Level

Logic Layer

DB Layer What happens when
the DB Layer throws a
checked exception?

21-11-24 12

OCP and Checked Exceptions

void printResult() {
 int value = 0;
 try {
 value = sumValues();
 } catch (DbException e) {
 display("ERROR");
 }
 display(value);
}

int sumValues() throws DbException
{
 return dbGetValue("Sales")
 + dbGetValue("Service");
}

int dbGetValue(String record) throws DbException
{
 return ...;
}

21-11-24 13

OCP and Checked Exceptions

● Using Checked Exceptions Violates OCP
– A low-level change to one module

..

● Solutions
– Throw unchecked exceptions

– Wrap exceptions inside custom (checked)
MyDatabaseException:
Changes to exceptions thrown are wrapped inside
custom exception.

21-11-24 14

OCP & Architecture

● Design is a spectacular failure if
..

● Ex: Generating a business report
– already implemented for the web

(scrollable, negative numbers in red)

– now adding B&W print
(pagination, negative numbers in brackets)

● To add the print report, what needs to:
– be changed?

– be added?

(Clean Architecture, Robert C. Martin, 2018)

21-11-24 15

OCP & Architecture

● To add the print report, what needs to
be changed? be added?

(Clean Architecture, Robert C. Martin, 2018)

One class Multiple classes

21-11-24 16

OCP & Architecture (cont)

● OCP is about protection from change
– If component A should be protected from changes in

component B, then..

● Ex: ReportGenerator is protected
from ScreenPresenter

– What does ReportGenerator
depend on?

– It's the business rules;
it's least likely to change;
it’s most likely to be reused.

● We'll see later how to use the
dependency inversion principle.

21-11-24 17

LSP

21-11-24 18

Inheritance

● Idea: Represents a..

● Example:

– Square is-a Rectangle, and gives reuse.
– But..

– How can we describe this problem?

What is an example
method in Rectangle

inconsistent with
Square?

..

21-11-24 19

Inheritance: LSP

● Liskov Substitution Principle (LSP)
B can inherit from A only if..

1)..
 that A's method accepts (or more) and

2)..
 that A's method does (or more).

● What methods in Rectangle fail LSP for Square?
–

– Square does not do the same things
with all values as Rectangle: fails LSP.

21-11-24 20

Is-A: LSP & Immutable

● LSP & Immutable
– Would making Rectangle and Square immutable

help?

–

● Inheritance must satisfy the SLP
so all derived objects are interchangable.

21-11-24 21

Is-A LSP: Example

● Photographer can photograph any Animal.
DuckPhotographer only wants to photograph Ducks.

● DuckPhotographer.photograph()
wants to reject non-ducks

– Could throw an
IllegalArgumentException?

● DuckPhotographer
..

– ..

21-11-24 22

Is-A LSP
● Rephrase LSP:

– Client code using a reference to the base class must be
able to..

– i.e., behaviour
is unchanged.

21-11-24 23

ISP

21-11-24 24

Interface Segregation Principle (ISP)

● Clients should not be forced to..

(Agile Principles, Patterns, and Practices in C# Martin, Micah, 2006)

Decompose into interface for each client

21-11-24 25

ISP Door Example

● Add a timed alarm to door using a
timer & listener

● We need VaultDoor
to be a TimerListener.

21-11-24 26

ISP Door Example

● What is wrong with making Door a TimerListener
so that VaultDoor can register with the Timer?

● ..

● Derived classes need to
implement TimerListener

● Change to TimerListener
interface requires
changes to all derived
classes.

21-11-24 27

Possible ISP solution

● Don’t force classes to
implement interfaces they don’t need.

21-11-24 28

DIP

21-11-24 29

Dependency Inversion Principle (DIP)

● Flexible code..
not on concrete implementations.

– Exception for stable classes like String

– Apply DIP to volatile classes we are actively developing.
Use interfaces; they are much less volatile

21-11-24 30

Common Case

● High-level code
often depends on low-level implementations

● Scope of Change
– Changes in the lowest levels (changing a class name /

method signature)..

● Can we "invert" this so highest level is isolated from change?
"Dependency Inversion"

21-11-24 31

Dependency Inversion

21-11-24 32

Dependency Inversion

● Idea:
– ..

● This is dependency inversion:
Lower level depends on the
interface in higher level

● This is Ownership Inversion:
higher level owns the interface.

– It dictates services it needs,
lower levels can implement
that to service its needs.

● ..

21-11-24 33

OCP & DIP Revisited

● Before DIP, Report
Generator depends on DB

● After DIP: DB depends on
Report Generator

21-11-24 34

SOLID Summary

● SRP: Single Responsibility Principle
– Each part of the system must have only one reason to change.

● OCP: Open-Closed Principle
– For a software system to be easy to change, those changes must

be done through adding new code, not changing existing code.

● LSP: Liskov Substitution Principle
– To build a software system from interchangeable parts, the parts

must adhere to a contract which allows the parts to be
interchangeable.

● ISP: Interface Segregation Principle
– Don't depend on things you don't use.

● DIP: Dependency Inversion Principle
– Code that implements high-level policy

should not depend on code that implements low-level details.

(Clean Architecture, Robert C. Martin, 2018; p59)

