Design Principles:
SOLID

21-11-24 - CMPT 373 Slides 15 © Dr. B. Fraser 1

Topics

Name your favourite design principle which:
1) Limits for whom we change a file.

2) Adds new code for changes.

3) Makes substitutable objects.

4) Prevents depending on things you don’t need.

5) Prevents high-level policies from depending on
ow-level detalils.

21-11-24

Design Principles

e Design principles help us design software which Is:
— more understandable

- more maintainable

 We have seen
- Separate aspects that change
from those that stay the same

- Classes should be
open for extension, but closed for modification

- Program to an interface, not an implementation
— Favour composition over inheritance

21-11-24

SOLID

 SRP: Single Responsibility Principle
- Each part of the system must have only one reason to change.

* OCP: Open-Closed Principle
- For a software system to be easy to change, those changes must
be done through adding new code, not changing existing code.

* LSP: Liskov Substitution Principle
— To build a software system from interchangeable parts,
the parts must adhere to a contract which allows the parts
to be interchangeable.

* |SP: Interface Segregation Principle
- Don't depend on things you don't use.

* DIP: Dependency Inversion Principle
— Code that implements high-level policy
should not depend on code that implements low-level details.

21-11-24 (Clean Architecture, Robert C. Martin, 2018; p59) 4

SRP

21-11-24

Single Responsibility Principle (SRP)

— Actor: A group of stakeholders

 |dea
- The contents of a module are there to
satisfy the needs of one group.

21-11-24 (Clean Architecture, Robert C. Martin, 2018) ¢

SRP Violation: Multiple Actors

 Actors’ Needs Employee

— calculatePay(): specified by accounting

— reportHours(): specified by human resources
+ calculatePay()
+ reportHours()
+ save()

— save(): specified by IT administrators

* Design couples Employee to three different actors
- Imagine a regularHours() function used by calculatePay() and
reportHours()

- If accountants ask for a change to regularHours(), the change
unexpectedly impacts reportHours() and HR

 SRP: Separate the code so that changes needed by one actor

21-11-24

SRP Solution

e Move each actor’'s needs to own

class
- Store data in its own
EmployeeData class

- Create three independent classes
to process the data

* No part of the processing code is
beholden to multiple stakeholders.

PayCalculator

+ calculatePay()

HourReporter

+ reportHours()

EmployeeData

EmployeeSaver

saveEmployee()

21-11-24

OCP

Open Closed Principle (OCP)

* "A software artifact should be open for extension but
closed for modification."

winterfaces Beverage
y Duck
FlyPolicy (_‘____‘___‘_‘_
| ? | | ? ? | + CDStl:I
NoFly FiyWithWings RedheadDuck RubberDuck /77_\
DarkRoast Decaf
0 ExtraDecorator
+ costl + cost) / 5‘3 \7\
Mocha Milk Whip
t0 ostl) 1)

21-11-24 (Bertrand Meyer. Object Oriented Software Construction, Prentice Hall, 1988, p23) 10

OCP and Checked Exceptions

High-Level
void printResult() {
int value = sumValues();
display(value);
b

Logic Layer

int sumValues() {
return dbGetValue("Sales")
+ dbGetValue('"Service");

}
DB Layer /
int dbGetValue(String record) {
return ...;
b

What happens when
the DB Layer throws a
checked exception?

21-11-24

11

OCP and Checked Exceptions

void printResult() {
int value = 0;
try {
value = sumValues();
} catch (DbException e) {
display("ERROR");

¥

display(value);
b
int sumValues() throws DbException
{

return dbGetValue("Sales")

+ dbGetValue("Service");

b
int dbGetValue(String record) throws DbException
{

return ...;
b

21-11-24

12

OCP and Checked Exceptions

* Using Checked Exceptions Violates OCP
- A low-level change to one module

e Solutions
- Throw unchecked exceptions

- Wrap exceptions inside custom (checked)
MyDatabaseException:
Changes to exceptions thrown are wrapped inside
custom exception.

21-11-24

13

OCP & Architecture

* Design is a spectacular failure if

* EX: Generating a business report

- already implemented for the web Web
(scrollable, negative numbers in red) Report

Generator

- now adding B&W print
(pagination, negative numbers in brackets) \L
* To add the print report, what needs to: Database
- be changed?
- be added?

21-11-24 (Clean Architecture, Robert C. Martin, 2018) 14

OCP & Architecture

* To add the print report, what needs to
be changed? be added?

One class Multiple classes
Web Web View Web View PDF View
Report
Generator
Screen Print
Screen
Presenter Presenter
Presenter
Database
Report Report
Generator Generator
Database Database

21-11-24 (Clean Architecture, Robert C. Martin, 2018) 15

OCP & Architecture (cont)

* OCP is about protection from change

- If component A should be protected from changes in
component B, then..

* EX: ReportGenerator is protected s v N
from ScreenPresenter
- What does ReportGenerator
depend On? Screen Print
Presenter Presenter
- It's the business rules;

it's least likely to change;
It’'s most likely to be reused.

Report
Generator

 We'll see later how to use the
dependency inversion principle.

Database

21-11-24

LSP

21-11-24

17

Inheritance

* |dea: Represents a..

* Example:

zinterfaces
Shape

&

Rectangle

i

Square

- Square is-a Rectangle, and gives reuse.

- But..

Rectangle

" What is an example

FJETATEAl)
+ setTopLefi(x, v)
+ setSize(width, height)

+ setColor(calor)
+ Arawe

\

method in Rectangle
inconsistent with
Square?

7

- How can we describe this problem?

21-11-24

18

Inheritance: LSP

* Liskov Substitution Principle (LSP)
B can inherit from A only If..

1)..

that A's method accepts (or more) and
2)..

that A's method does (or more).

* What methods in Rectangle fail LSP for Square?

— Square does not do the same things
with all values as Rectangle: fails LSP.

ginterfaces
Shape

&

Rectangle

I

Sguare

Rectangle

F JETATEAL)
+ setTopLeftix, v)
+ setSize(width, height)

+ setColor(caolor)
+ Arasaiy

21-11-24

19

Is-A: LSP & Immutable

e LSP & Immutable

- Would making Rectangle and Square immutable

help?

* Inheritance must satisfy the SLP
so all derived objects are interchangable.

ginterfaces
Shape

&

Rectangle

I

Square

Rectangle

F JETATEAL)
+ setTopLeftix, v)
+ setSize(width, height)

+ setColor(caolor)
+ Arasaiy

21-11-24

20

Is-A LSP: Example

Photographer can photograph any Animal.
DuckPhotographer only wants to photograph Ducks.

DuckPhotographer.photograph()

wants to reject non-ducks
— Could throw an
lllegalArgumentException?

DuckPhotographer

Photographer

photograph{Animal)

T

Animal R
Fly
Duck R

DuckPhotographer

photograph{Animal)

21-11-24

21

IS-A LSP

 Rephrase LSP:
— Client code using a reference to the base class must be
able to..

- 1.e., behaviour
IS unchanged.

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

21-11-24

22

ISP

21-11-24

23

Interface Segregation Principle (ISP)

 Clients should not be forced to..

tinterface» tinterface»
GameChangedObserver TextWatcher

+ newPlayerAdded(..)
+ playerMoved(...)

+ gameFinished(...)

+ newHighScore(.)

+ timeRunningOut(...}

+ afterTextChanged(..)
+ beforeTextChanged(...)
+ onTextChanged(...)

Decompose into interface for each client

winterface» ginterface» ginterfacex»
TextWatcherBefore TextWatcherOnChange TextWatcherAfter
+ beforeTextChanged(. .} + onTextChanged(...) + afterTextChanged(...)

21-11-24 (Agile Principles, Patterns, and Practices in C# Martin, Micah, 2006)74

ISP Door Example

Door

+ lock()
+ unlock()

+ isDoorLocked()

==

SlidingDoor

VaultDoor

* Add a timed alarm to door using a

timer & listener

ginterface»
TimerListener

Timer

+ onTimeout()

We need VaultDoor
to be a TimerListener.

21-11-24

25

ISP Door Example

* What is wrong with making Door a TimerListener
so that VaultDoor can register with the Timer?

interface»

Timer

* Derived classes need to TimerListener
Implement TimerListener r
« Change to TimerListener '
Interface requires Door
changes to all derived
classes. BEE%EEEESEEE
SlidingDoor VaultDoor

21-11-24

Possible ISP solution

* Don’t force classes to
Implement interfaces they don’t need.

Door

7

T

«interface»
TimerListener

%

Timer

P

SlidingDoor

VaultDoor

21-11-24

27

DIP

21-11-24

28

Dependency Inversion Principle (DIP)

 Flexible code..

not on concrete implementations.
— Exception for stable classes like String

— Apply DIP to volatile classes we are actively developing.
Use interfaces; they are much less volatile

21-11-24

29

Common Case

* High-level code
often depends on low-level implementations

e Scope of Change

Policy Layer

—————————

Utility Layer

- Changes in the lowest levels (changing a class name /

method signature)..

 Can we "invert" this so highest level is isolated from change?

"Dependency Inversion"

21-11-24

30

Policy
Policy Layer
I
]
I
]
I
i
]
|
]
|
T
I
i
i
Mechanism
i
i
]
AV
«lnterfau:_:e» Mechanism
Mechanism &]----- Laver
Interface v
1
1
1
1
1
1
i
1
1
1
1
1
i
:
1
Utility i
1
!
AV
winterfacen
Utility K1 Utility Layer

Interface

rsion

Policy

winterfacesn
Policy Layer Policy Service
Interface
AN
!
i
1
1
1
i
1
i
Mechanism i
1
i
i
!
Mechanism winterfacesn
Layer Mecha_nlsm
Service
Interface
AN
|
|
I
]
I
i
i
|
I
|
—_—]
Utility :
|
I
i
I
Utility Layer

Dependency Inversion

Policy

e |dea;

* This is dependency inversion:
Lower level depends on the
Interface in higher level

* This is Ownership Inversion:
higher level owns the interface.
- |t dictates services it needs,
lower levels can implement
that to service its needs.

Policy Layer

uinterfacen
Policy Service
Interface

o

Mechanism

Mechanism
Layer

uinterfacen
Mechanism
Service
Interface

&

Utility

21-11-24

Utility Layer

OCP & DIP Reuvisited

* Before DIP, Report
Generator depends on DB

» After DIP: DB depends on
Report Generator

Weh View PDF View
Web View PDF View
Screen Print
Screen Print Presenter Presenter
Presenter Presenter | |
\’/—‘ W N
\/ Report winterfacen
Report Generator Report Service
Interface
Generator
AN
i
Database Database

21-11-24

33

SOLID Summary

SRP: Single Responsibility Principle
- Each part of the system must have only one reason to change.

OCP: Open-Closed Principle
- For a software system to be easy to change, those changes must
be done through adding new code, not changing existing code.

LSP: Liskov Substitution Principle

— To build a software system from interchangeable parts, the parts
must adhere to a contract which allows the parts to be
Interchangeable.

ISP: Interface Segregation Principle
- Don't depend on things you don't use.

DIP: Dependency Inversion Principle
— Code that implements high-level policy
should not depend on code that implements low-level details.

21-11-24

(Clean Architecture, Robert C. Martin, 2018; p59) 34

