Design Principles:
SOLID

Name your favourite design principle which:
1) Limits for whom we change a file.

2) Adds new code for changes.

3) Makes substitutable objects.

4) Prevents depending on things you don’t need.

5) Prevents high-level policies from depending on
ow-level detalils.

* Design principles help us design software which Is:
— more understandable

- more maintainable

* We have seen
— Separate aspects that change
from those that stay the same

— Classes should be
open for extension, but closed for modification

- Program to an interface, not an implementation
— Favour composition over inheritance

 SRP: Single Responsibility Principle
- Each part of the system must have only one reason to change.

« OCP: Open-Closed Principle
- For a software system to be easy to change, those changes must
be done through adding new code, not changing existing code.

 LSP: Liskov Substitution Principle
- To build a software system from interchangeable parts,
the parts must adhere to a contract which allows the parts
to be interchangeable.

* |SP: Interface Segregation Principle
— Don't depend on things you don't use.

* DIP: Dependency Inversion Principle
- Code that implements high-level policy
should not depend on code that implements low-level details.

(Clean Architecture, Robert C. Martin, 2018; p59)

SRP

— Actor: A group of stakeholders

 |dea
- The contents of a module are there to
satisfy the needs of one group.

(Clean Architecture, Robert C. Martin, 2018)

SRP Violation: Multiple Actors

-
— calculatePay(): specified by accounting —
— reportHours(): specified by human resources
- save(): specified by IT administrators

+ calculatePay()
+ reportHours()
+ save()

- Imagine a regularHours() function used by calculatePay() and
reportHours()

- If accountants ask for a change to regularHours(), the change
unexpectedly impacts reportHours() and HR

 SRP: Separate the code so that changes needed by one actor

21-11-24

SRP Solution

— Store data in its own
EmployeeData class

- Create three independent classes
to process the data

* No part of the processing code Is
beholden to multiple stakeholders.

21-11-24

PayCalculator

+ calculatePay()

HourReporter

+ reportHours()

EmployeeSaver

saveEmployee()

EmployeeData

OCP

Open Closed Principle (OCP)

* "A software artifact should be open for extension but
closed for modification."

21-11-24

10

OCP and Checked Exceptions

High-Level

void printResult() {
int value = sumValues();

display(value);

Logic Layer

int sumValues() {
return dbGetValue("Sales'")
+ dbGetValue('"Service");

int dbGetValue(String record) { ~

return ...;

}

21-11-24

What happens when
the DB Layer throws a
checked exception?

11

OCP and Checked Exceptions

volid printResult() {
int value = 0;

try {
value = sumValues();

} catch (DbException e) {
display("ERROR");
b

display(value);

sumValues() throws DbException

return dbGetValue("Sales'")
+ dbGetValue('"Service");

dbGetValue(String record) throws DbException

return ...,

21-11-24

* Using Checked Exceptions Violates OCP
- A low-level change to one module

e Solutions
- Throw unchecked exceptions

- Wrap exceptions inside custom (checked)
MyDatabaseException:
Changes to exceptions thrown are wrapped inside
custom exception.

OCP & Architecture

* EX:
— already implemented for the web
(scrollable, negative numbers in red)

- now adding B&W print
(pagination, negative numbers in brackets)

- be changed?
- be added?

21-11-24

Web
Report
Generator

14

OCP & Architecture

* To add the print report, what needs to
be changed? be added?

One class Multiple classes

Screen
Presenter

Web
Report
Generator

Screen
Presenter
Database

Report
Generator

21-11-24

Print
Presenter

Generator

15

OCP & Architecture (cont)

- |If component A should be protected from changes In
component B, then..

* EX: ReportGenerator is protected
from ScreenPresenter

- What does ReportGenerator
depend on?

Screen
- |t's the business rules:

it's least likely to change;

Print
Presenter

It’'s most likely to be reused.

« We'll see later how to use the

dependency inversion principle.

21-11-24

16

LSP

Inheritance

. Represents a..

o
ginterfaces
Shape
Rectangle

- Square is-a Rectangle, and gives reuse.
- But..

Rectangle

What is an example
method in Rectangle

elAled

+ setTopLeft(x, v)
+ setSize(width, height)
+ setColor(calor)

inconsistent with
Square?

- How can we describe this problem?

21-11-24

18

Inheritance: LSP

ginterfaces

* Liskov Substitution Principle (LSP) Shape
B can inherit from A only If..

that A's method accepts (or more) and

2)..
that A's method does (or more).

a Rectangle

geETArear
: + setToplLefiix, v)
— Square does not do the same things + setSize(width, height)

with all values as Rectangle: fails LSP. *+ setCalor(color)

21-11-24

Is-A: LSP & Immutable

° sinterfaces
- Would making Rectangle and Square immutable
help?

B Rectangle

* |nheritance must satisfy the SLP

so all derived objects are interchangable.

W= |ij

+ setTopLeft(x, v)
+ setSize(width, height)
+ setColor(caolor)

21-11-24

Is-A LSP: Example

* Photographer can photograph any Animal.
DuckPhotographer only wants to photograph Ducks.

DuckPhotographer.photograph()

wants to reject non-ducks
- Could throw an

_ Photographer
lllegalArgumentException? m
[]

photographiAnimal)

DuckPhotographer

photographiAnimal)

21-11-24

 Rephrase LSP:
— Client code using a reference to the base class must be
able to..

- l.e., behaviour
IS unchanged.

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

ISP

Interface Segregation Principle (ISP)

21-11-24

Clients should not be forced to..

«interface»
GameChangedObserver

+ newPlayerAdded(...)

+ playerMoved(...)

+ gameFinished|.)
+ newHighScore(...)
+ timeRunningOut(...)

tinterfacex»
TextWatcher

+ onTextChanged(...)

Decompose into interface for each client

winterface» ginterface» ginterfacex»
TextWatcherBefore TextWatcherOnChange TextWatcherAfter

+ beforeTextChanged(...) + onTextChanged(...) + afterTextChanged(...)

24

ISP Door Example

SlidingDoor VaultDoor

21-11-24

* Add a timed alarm to door using a
timer & listener

ginterface»
TimerListener

+ onTimeout()

* We need VaultDoor
to be a TimerListener.

25

ISP Door Example

* What is wrong with making Door a TimerListener
so that VaultDoor can register with the Timer?

interface»
TimerListener

21-11-24

Derived classes need to
Implement TimerListener

Change to TimerListener
Interface requires
changes to all derived
classes.

SlidingDoor

A
I
I

VaultDoor

Timer

26

Possible ISP solution

* Don'’t force classes to
Implement interfaces they don’t need.

«interface»
TimerListener
A
|

|
SlidingDoor VaultDoor

21-11-24

27

DIP

e Flexible code..

not on concrete implementations.
— EXxception for stable classes like String

— Apply DIP to volatile classes we are actively developing.
Use interfaces; they are much less volatile

Common Case

. Policy Layer
often depends on low-level implementations

i
Utility Layer

- Changes in the lowest levels (changing a class name /
method signature)..

* Can we "invert" this so highest level is isolated from change?
"Dependency Inversion"

21-11-24 30

Policy

Policy
Policy Layer
I
]
I
]
I
i
]
|
]
|
T
I
i
i
Mechanism
i
i
]
AV
«lnterfau:_:e» Mechanism
Mechanism &]----- Laver
Interface v
1
1
1
1
1
1
i
1
1
1
1
1
i
:
1
Utility i
1
!
AV
winterfacen
Utility K1 Utility Layer

Interface

winterfacesn
Policy Layer Policy Service
Interface
AN
!
i
1
1
1
i
1
i
Mechanism i
1
i
i
!
Mechanism winterfacesn
Layer Mecha_nlsm
Service
Interface
AN
|
|
I
]
I
i
i
|
I
|
—_—]
Utility :
|
I
i
I
Utility Layer

Dependency Inversion

uinterfacen
Policy Layer Policy Service
°® Interface

* This is dependency inversion:
Lower level depends on the ;
interface in higher level anerrce,
Service
* This is Ownership Inversion: Interface
higher level owns the interface.
- |t dictates services it needs,

lower levels can implement
that to service its needs.

I
I
I
i
i
i
i
i
I
Utility Layer

21-11-24

OCP & DIP Reuvisited

o , Report
Generator depends on DB

21-11-24

: DB depends on
Report Generator

33

SRP: Single Responsiblility Principle
- Each part of the system must have only one reason to change.

OCP: Open-Closed Principle
- For a software system to be easy to change, those changes must
be done through adding new code, not changing existing code.

LSP: Liskov Substitution Principle
- To build a software system from interchangeable parts, the parts
must adhere to a contract which allows the parts to be
interchangeable.

ISP: Interface Segregation Principle
— Don't depend on things you don't use.

DIP: Dependency Inversion Principle
- Code that implements high-level policy
should not depend on code that implements low-level details.

(Clean Architecture, Robert C. Martin, 2018; p59)

