
21-11-16 1

Pattern / Anti-pattern:
Singleton

© Dr. B. FraserSlides 14CMPT 373

Photo by Gratisography from Pexels

21-11-16 2

Topics

1) How can we:
a) Create just one instance of a class?

b) Allow all the code to share access to an object?

c) Allow lazy initialization?

d) Tightly couple all our code to one class

Wait..
What?

21-11-16 3

Motivation

● Sometimes, it’s critical that only one instance of a
class exists

– Ex: Logger, DB Connector, Thread pool, Launch
control timer...

● Ex: Battery Contactor Controller (BCC)
– Hardware to control power to an electric vehicle’s

motor

– Software must control
hardware carefully

21-11-16 4

class BCC {

public BCC() {

// Check HW

// Set to Off

}

.. startPreCharge();

.. turnOn();

.. turnOff();

.. activateSaftey();

}

Battery Contactor Controller (BCC)

Constructor
● check hardware connection
 & turn off (open) contactor
● requires hardware sub-system
 to initialize first.

StartPreCharge()
● Precharge contactor on for 10s,
 then turn on main contactor;
● Prevents voltage spike frying the system.

Safety mode
● Disables (opens) both contactors

● turnOn() closes main contactor;
● turnOff() opens both contactors

21-11-16 5

Analysis of BCC

class BCC {

public BCC() {

// Check HW

// Set to Off

}

.. startPreCharge();

.. turnOn();

.. turnOff();

.. activateSaftey();

}

● What happen if more >1 BCC?
– Constructor of 2nd would turn

off contactors, interrupting
whatever was happening 1st

– Turing 1st “on” while 2nd
pre-charging could damage
hardware

– Activating safety mode on 1st
object irrelevant with 2nd!

● ..

21-11-16 6

Requirements of BCC

class BCC {

public BCC() {

// Check HW

// Set to Off

}

.. startPreCharge();

.. turnOn();

.. turnOff();

.. activateSaftey();

}

● Requirement
– ..

– ..

– ..

Global access
to the BCC

a bad design?

21-11-16 7

Ideas that Don’t Work

21-11-16 8

Easy things that don’t work

● Bad idea 1: ..
– gives everyone access to BCC

– but..

● Bad idea 2: ..
– everything static (static class

w/ static member functions and
variables)

– ..

Requirement

1) At most one copy of
BCC

2) Construction after other
subsystems initialized

3) Any code can get
access to the BCC

21-11-16 9

Singleton

21-11-16 10

Limit Construction

● new executes a
constructor; ..

– Can instantiate an
object from inside the
class

● Create a..

public class BCC {

private static BCC instance;

private BCC() {

// Check HW

// Set to Off

}

public static BCC getInstance() {

if (instance == null) {

instance = new BCC();

}

return instance;

}

public void startPreCharge() {}

public void turnOn() {}

public void turnOff() {}

public void activateSaftey(){}

}

21-11-16 11

Singleton Pattern

● Singleton Pattern
..

– To get an instance of this class,
you have to go through this class.

– Public static method to get an
instance so anyone can access it

– Allows lazy initialization.

● Exercise
Changed RedHeadDuck into singleton
HeadFirst sample code.
(Would not want to, though!) Statics

21-11-16 12

Multi-Threaded

● What if singleton used in multithreaded application?
– two threads enter the

==null check at once;
instantiating two BCC’s.

– 1st one through gets an
orphaned copy of the BCC, thus causing havoc!

● Solution
– ..

● Poor Solution
– If not needing lazy / late initialization:

private static instance = new BCC();
... getInstance() { return instance; }

– hard to track down bugs: construction happens at application
launch; and initialization order dependency.

public static BCC getInstance() {

if (instance == null) {

instance = new BCC();

}

return instance;

}

21-11-16 13

Problems with Singletons

● Inheriting from a singleton class is problematic
– have to make constructor protected, and then can

end up with multiple of them!

● ..
– GS makes it hard to understand the system because

..
-- things happen outside normal flow of execution.

– Components accessing GS
..
(mock and driver objects)

● Google code talk on global state
https://www.youtube.com/watch?v=-FRm3VPhseI

21-11-16 14

How to avoid globals?

● What design principle/technique can we use to avoid
this?

● ..
pass it a reference to the required “global” object(s)

– ..

– Testable: Client code able to select which objects it
wants other code to use (good for mock’ing)

– Explicitly force the initialization order at compile time.

21-11-16 15

Guideline

● When to use dependency injection (DI)?
– ..

(things that don’t store the data, but process it)

● should use Dependency Injection

– ..
(store data; things you’d save)

● need not use dependency injection;
just intantiate the object as needed

21-11-16 16

Summary

● Singleton Pattern for
– Limit instantiation of a class to 1

– Global access to that object

● Supports lazy initialization

● Anti-pattern: It creates global state
– cannot test with it

– tight coupling to all classes that use it

– hidden dependencies

