
21-11-04 1

Decorator
Pattern

© Dr. B. Fraser

Slides 13CMPT 373 Image: Rachel Claire on pexels.com

21-11-04 2

Topics

1) How can we easily modify existing classes with new
behaviours?

2) How can we design our code to support changes
during maintenance?

21-11-04 3

The Coffee Shop

Trying to
Add Extras

Image: Chevanon Photography on pexels.com

21-11-04 4

Base Coffee Shop System

● What does inheritance buy us?
– ..

Useful for collections of
beverages or a function to
operate on any Beverage

● Are separate classes useful?
– Upfront Recommendation:

Don’t use inheritance for your
entities, but rather your
policies.

● Our work today is to add extras to our drinks:
Decaf with Mocha and Soy

21-11-04 5

Try 1: Derived Classes

● Each extra will:
– Modify drink cost

– Modify drink description

● Discussion
What happens when adding:

– New Caramel Extra

– New HotChocolate

21-11-04 6

Try 1: Derived Classes (cont)

● Critique what is wrong with the
OOD using software design
principles

● Violates OOD principles:
– encapsulate what changes

– favour composition over
inheritance

– Don’t Repeat Yourself
(multiple classes for whip)

● Cannot change an object’s type at
runtime

– Cannot add Whip to an already
instantiated beverage

21-11-04 7

Try 2: Extras in Base Class

● Put the extras in the base class
– Base class computes cost of

extras

– Derived classes provide
cost of plain drink

● What’s better about this OOD?
– No class explosion!

– Can dynamically
add/remove extras

21-11-04 8

Try 2: Extras in Base Class (cont)

● Problems
– To add a new extra requires

..
Likely to introduce bugs and
non-local changes (derived
classes)

– Inherited behaviour (extras) may
not make sense in some drinks

Ex: ice-tea with whip cream?

– Creating a double-mocha

● Ideas to use to enhance our OOD
– ..

21-11-04 9

Open-Closed Principle

● Design Principle:
Open-Closed Principle

– Classes should be
open for..
closed for..

– Ex: adding a new extra should not
require re-coding existing classes

● New requirements should result in new
classes, not changing existing code at
the root of the inheritance tree

..
Adds a level of abstraction

(complexity);
use in areas expected to change

21-11-04 10

Decorators
to add Extras

Image: https://chercher.tech/kotlin/decorator-design-pattern-kotlin

21-11-04 11

The Ideas So Far

● What was wrong with each of these?

21-11-04 12

Whip

 cost()
Mocha

 cost()

Try 3: Decorator

● An Example:
Make a Mocha DarkRoast with Whip

DarkRoast

 cost()

main() {
Beverage b =
int total = b.cost();

}

21-11-04 13

Try 3: Decorator (cont)

Decorator Pattern

● ..

● Decorators provide a
flexible alternative to..

21-11-04 14

Decorator w/ Mocha DarkRoast with Whip

Whip
Mocha

DarkRoast

 cost()
 cost()

 cost()

main() {
Beverage b =
int total = b.cost();

}

: Whip
has-a

Is-a Beverage

: Mocha
has-a

Is-a Beverage

: DarkRoast

Is-a Beverage

has-a
Beverage

main()

Decorator Drawing (idea)

Decorator UML Object Diagram

21-11-04 15

In-class Exercise

● Draw a UML object diagram for:
Double mocha, soy, decaf

21-11-04 16

Decorator Code

class DarkRoast implements Beverage
{
 public String getDescription() {
 return "Dark Roast Coffee";
 }
 public double cost() {
 return .99;
 }
}

class Whip extends ExtraDecorator {
 public Whip(Beverage beverage) {
 super(beverage);
 }

 public String getDescription() {
 return beverage.getDescription()

+ ", Whip";
 }

 public double cost() {
 return .10 + beverage.cost();
 }
}

Source: Head First Design Patterns Ch2 (modified)

interface Beverage {
 String getDescription();
 double cost();
}

abstract class ExtraDecorator
 implements Beverage
{
 protected Beverage beverage;
 public ExtraDecorator(Beverage beverage) {
 this.beverage = beverage;
 }
}

21-11-04 17

Decorator Code (client)

class DarkRoast implements Beverage
{ ... }

class Whip extends ExtraDecorator {
 public Whip(Beverage beverage) { ... }
 ...
}

Source: Head First Design Patterns Ch2 (modified)

interface Beverage {
 String getDescription();
 double cost();
}

abstract class ExtraDecorator
 implements Beverage
{ ... }

class ClientCode {
void foo() {

Beverage b = new DarkRoast();
b = new Mocha(b);
b = new Mocha(b);
b = new Whip(b);
System.out.println(b.getDescription() + " $" + b.cost());

}

void bar() {
Beverage b = new Whip(new Mocha(new Mocha(new DarkRoast())));
System.out.println(b.getDescription() + " $" + b.cost());

}
}

21-11-04 18

Decorator OOD

● Design Principle:
Favour composition over inheritance

– Decorator still uses inheritance: gives us runtime
polymorphism

– Behaviours (methods) are modified via composition

● Design Principle:
Open-Closed Principle

– New “extras” added by adding new class;
existing code unchanged

21-11-04 19

Decorator Features

● Decorators have..

● Can use..
to wrap an object

– Decorator can wrap a decorator (same supertype)

● Decorator can add behaviour
before/after delegating to object
it wraps to do the rest of the job

● Uses composition, so can
decorate objects dynamically
at runtime

21-11-04 20

Decorator Drawbacks

● Adds many small classes to a project
– increased complexity for learning the OOD.

● Instantiation is more complex
– Must instantiate the base object,

and then wrap it with each decorator
(can use the builder pattern)

● Client code cannot interrogate the object type to find
out its inner-object’s concrete type

– But! If code depends on concrete types, it’s likely bad
code! Code to an interface

21-11-04 21

● In the patterns project (see sample code from lecture):
– Add “Iced” extra (+$0.75)

– Add “SuperSize” extra (twice the price)
(Problematic – Why?)

Coding Exercise

21-11-04 22

Java I/O Decorators

● Java I/O uses a few streams,
and numerous decorators

– Complex initially; easier once you know decorators

21-11-04 23

Video Stream Decorators

● Use decorators to add processing to a video stream

21-11-04 24

Scroll Bar Window Decorators

● Use decorators to add scroll bars to a window

By Nheirbaut at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=18612968

21-11-04 25

Summary

● Design Principles
– Encapsulate what varies

– Favour composition over inheritance

– Open for extension, closed for modification

● Decorator Pattern
– The decorator is-a base class

– The decorator has-a base class

– Attaches additional responsibilities to an object
dynamically at runtime

● Plain coffee is so much easier!

