Decorator
Pattern

© Dr. B. Fraser

1) How can we easily modify existing classes with new
pehaviours?

2) How can we design our code to support changes
during maintenance?

The Coffee Shop

Trying to
Add Extras

ohy on pexels.com

Base Coffee Shop System

Useful for collections of scrption: String

beverages or a function to geiDesciptiong

getCostd

operate on any Beverage
) DarkRoast

- Upfront Recommendation:
Don’t use inheritance for your
entities, but rather your
policies.

* Our work today is to add extras to our drinks:
Decaf with Mocha and Soy

21-11-04

Try 1: Derived Classes

— Modify drink cost
— Modify drink description

What happens when adding:
- New Caramel Extra

- New HotChocolate

DecafWithSoy DecafWithWhip | |DecafWithSoyAndWhip

21-11-04

Try 1: Derived Classes (cont)

e Critique what is wrong with the
OOD using software design

pHﬂCIpleS description: String

getDescription(

- encapsulate what changes

- favour composition over
Inheritance

- Don’t Repeat Yourself
(multiple classes for whip)

)
DecafWithSoy DecafWithWhip | |DecafWithSoyAndWhip

- Cannot add Whip to an already
Instantiated beverage

21-11-04

Try 2: Extras in Base Class

- Base class computes cost of deseription: Siring
extras nasti
- Derived classes provide
cost of plain drink gelDescripion)
getCostl
get'setHasSoy
e getizetHasWhip
- No class explosion!
- Can dynamically ParkRoast

add/remove extras

21-11-04

Try 2: Extras in Base Class (cont)

21-11-04

To add a new extra requires

Likely to introduce bugs and
non-local changes (derived
classes)

Inherited behaviour (extras) may
not make sense in some drinks

EX: Ice-tea with whip cream?
Creating a double-mocha

DarkRoast

description: String
hasSoy
hasWhip

getDescription()
getCost()

get'setHasSoy
get’setHasWhip

Open-Closed Principle

description: String
hasSoy

- Classes should be
open for..
closed for..
- Ex: adding a new extra should not
require re-coding existing classes

* New requirements should result in new
classes, not changing existing code at
the root of the inheritance tree

Adds a level of abstraction

(complexity);
use in areas expected to change

21-11-04

Decorators
to add Extras

The Ideas So Far

ription()
;05

DarkRoast

cost)

DecafWithSoy DecafWithWhip | |DecafWithSoyAndWhip

21-11-04

description: String
hasSoy
hasWhip

cription()

)

ﬁsSny
asWhip

* An Example:
Make a Mocha DarkRoast with Whip

main() {
Beverage b =
int total = b.cost();

}

Mocha -~ ———__
DarkRoast N

B cost()
m

Try 3: Decorator (cont)

* Decorators provide a
flexible alternative to..

21-11-04

13

Decorator w/ Mocha DarkRoast with Whip

Decorator Drawing (idea)

main() {
Beverage b =

int total = b.cost();

DarkRoast

B cost()

Decorator UML Object Diagram

: Whip has-a — : DarkRoast

|s-a Beverage Is-a Beverage |s-a Beverage

21-11-04 14

 Draw a UML object diagram for:
Double mocha, soy, decaf

Decorator Code

interface Beverage {

String getDescription(); abstract class ExtraDecorator
double cost(); implements Beverage

} {

protected Beverage beverage;

public ExtraDecorator(Beverage beverage) {
this.beverage = beverage;

}

}

class DarkRoast implements Beverage class Whip extends ExtraDecorator {
{ public Whip(Beverage beverage) {
public String getDescription() { super (beverage);
return "Dark Roast Coffee", }
}

public double cost() { public String getDescription() {
return .99; return beverage.getDescription()
} + ", Whip";
b b

public double cost() {
return .10 + beverage.cost();
}

}
21-11-04 Source: Head First Design Patterns Ch2 (modified)

Decorator Code (client)

interface Beverage {

String getDescription(); abstract class ExtraDecorator
double cost(); implements Beverage

¥ { ...}

class DarkRoast implements Beverage class Whip extends ExtraDecorator {
{ ...} public Whip(Beverage beverage) { ...

class ClientCode {
void foo() {
Beverage b = new DarkRoast();
b new Mocha(b);
b new Mocha(b);
b new Whip(b);
System.out.println(b.getDescription() + " $" + b.cost());
b

void bar() {

Beverage b = new Whip(new Mocha(new Mocha(new DarkRoast())));
System.out.println(b.getDescription() + " $" + b.cost());

21-11-04 Source: Head First Design Patterns Ch2 (modified)

* Design Principle:
Favour composition over inheritance
— Decorator still uses inheritance: gives us runtime
polymorphism

- Behaviours (methods) are modified via composition

* Design Principle:
Open-Closed Principle

- New “extras” added by adding new class;
existing code unchanged

Decorator Features

e Decorators have..

 Can use..
to wrap an object
— Decorator can wrap a decorator (same supertype)

* Decorator can add behaviour
before/after delegating to object
It wraps to do the rest of the job

 Uses composition, so can
decorate objects dynamically
at runtime

21-11-04

* Adds many small classes to a project
- Increased complexity for learning the OOD.

* |[nstantiation iIs more complex
- Must instantiate the base object,
and then wrap it with each decorator
(can use the builder pattern)

* Client code cannot interrogate the object type to find

out Its inner-object’s concrete type
- But! If code depends on concrete types, it’s likely bad
code! Code to an interface

* In the patterns project (see sample code from lecture):
- Add “Iced” extra (+$0.75)

- Add “SuperSize” extra (twice the price)
(Problematic — Why?)

Java I/O Decorators

 Java I/O uses a few streams,

and numerous decorators
- Complex initially; easier once you know decorators

InputStream

-) .))) {abstract}
FilelnputStream StringBufferinputStream ByteArrayinputStream FilterinputStream
PushbackinputStream BufferedinputStream DatalnputStream

21-11-04 22

Video Stream Decorators

* Use decorators to add processing to a video stream

winterfaces
Video Stream

Video Stream Video Stream Video Stream
From Disk From Network Decorator
Resized Moise Reduced
Video Stream Video Stream

21-11-04

23

Scroll Bar Window Decorators

* Use decorators to add scroll bars to a window

+main{args:s5trin : woid +draw(): void

+getDescription(): String

I
SimpleWindow WindowDecorator =

+draw(): vold
+getDescription(): String

HorizontalScrollBarDecorator VerticalScrollBarDecorator

+draw(): void +draw(): void

+getDescription(): String +getDescription(): 5tring
~-drawHorizontalscrollBar(): wvoid -drawverticalscrollBar(): woid

21-11-04 By Nheirbaut at English Wikipedia, CC BY-SA 3.0,

httne://commone wikimedia ora/w/indexy nhn?ciirid=18R120RK

* Design Principles
- Encapsulate what varies

— Favour composition over inheritance
— Open for extension, closed for modification

e Decorator Pattern
— The decorator i1s-a base class

— The decorator has-a base class

- Attaches additional responsibilities to an object
dynamically at runtime

 Plain coffee Is so much easier!

