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Topics

1) What are the limits of using inheritance?
2) What principles can we use to evaluate an OOD?

3) How can we configure an object with a new
behaviour at runtime? (flexibility)
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Case Study

e We want to: Duck

- Create a duck simulator

which shows ducks

swimming and quacking quack(
- Make it flexible to add new swim()
display() =-- abstract method
features

b

MallardDuck RedheadDuck

display() display()
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Case Study

* Inheritance good because:

- . Implement
guack() and swim() just once

— gives runtime polymorphism

Duck

quacki)
SWIimi
display) =-- abstract method

']

MallardDuck RedheadDuck

display() display()
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Polymorphism

- The specific method called is

decided at runtime based on

- myDuck.display() could run one of
two (or more) implementations.

e Static (compile time) polymorphism:

An
aside

- method overloading, C++ template
classes

Duck myDuck;
if (wantsMallard()) {

myDuck = new MallardDuck();
} else {

myDuck = new RedHeadDuck();
b

myDuck.display();

Duck

gquack(
swimQ
display() =-- ahstract method

— ]

MallardDuck RedheadDuck

display() display()
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Make Ducks Fly

* Make ducks fly!
- Add fly() to base class

— Derived classes get behaviour for
free

* But, adding fly()

Duck
quackd
swim(
display() =-- abstract method
fly()
MallardDuck RedheadDuck
display( display(
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Make Ducks Fly

Duck

quack(

swimi

display() =-- abstract method
fly()

MallardDuck RedheadDuck RubberDuck
display() display( display(
fly()
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Make Ducks Fly — Bad?

* Inheritance is bad here because:

Duck

(non-local effects); o

quack()
sWimoQ
display( =-- abstract method

_ MR s

MallardDuck

RedheadDuck

RubherDuck

display()

display()

(fixed when instantiated)

display()
fly()

* |nheritance requires: Polymorphism allows you
all base-class functionality to be to point to different objects,

shared by all derived classes

but once instantiated, a
concrete object has but one

behaviour/method
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Separate out Behaviours

* Put fly() into a family of..

Create an supertype
(interface or ABC);

All concrete policies

(behaviours)
implement this
supertype.

- Instantiate the desired fly policy;
each Duck has-a FlyPolicy

;/.s having its own hard coded policy

winterfaces
FiyPolicy

Duck

iyl

T 1

MoFly FhvWithWings

swim
displayl =-- abstract method

JTL

RedheadDuck

MallardDuck

RubherDuck
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Design Principle (Separate Change)

* Design Principle

— Limits the extent of a likely change by encapsulating

that feature inside a class.

=

RedheadDuck

RubberDuck
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Design Principle (ocp)

* Design Principle: Open-Closed Principle

- Ex: adding a new policy/behaviours should not require
re-coding parts of existing system.

Hot changing existing (tested/debugged) code, such as
at the root of the inheritance tree.

— —

NoFly FiyWithWings RedheadDuck RubberDuck
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Design Principle (OCP cont)

Ex: Observable classes can be

extended with new observers without modification

Don’t apply open/closed principle everywhere:
— adds extra level of abstraction (complexity)

— only use in areas expected to change

Predict likely changes with OOD experience and domain

knowledge

wimterfaces
FiyPolicy

i

7%

Duck

=

NoFly

FiyWithWings

RedheadDuck

RubberDuck
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Design Principle (Interface over Impl.)

* Design Principle

“Interface” = super-type for polymorphism (interface/ABC)

* Code depend on just the supertype,

not a concrete implementation

- the behaviour we get completely depends

on the object we are given

wimterfaces

i

FiyPolicy

7%

NoFly

FiyWithWings

Duck

=

RedheadDuck

RubberDuck
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Code Example

abstract class Duck {

FlyPolicy flyp;  Enhancements
Duck(FlyPolicy flyP) { - Add a SetFIyPoIicyQ to Duck so it
} this.flyP = flyP; can change at runtime.

- Imagine a game where the duck

void performFly() { IS configured/upgraded.

flyP.fly();
}

abstract void display();

class Mallardbuck extends Duck {
MallardDuck() {
super(new FlywithWings());
}

void display() {
System.out.println("I'm a Mallard");
}

}
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Design Principle (Favour Composition)

* Design Principle

— runtime selectable behaviour, not dictated by rigid

compile-time inheritance hierarchy

interface
«FmPuHcy» <
FT
| |
NoFly FiyWithWings

Duck

=

RedheadDuck

RubberDuck

Duc

k

fly()

quack(
swim()
display) =-- abstract method

MallardDuck RedheadDuck RubberDuck
display() displayi) display()
fly()
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Strategy Pattern

e Strategy Pattern..

— Strategy lets the algorithm vary independently from

clients that use It.

* Other applications

- Tax codes for different provinces

- Defining what to accept when searching file names

awinterfaces
FiyPolicy

G

NoFly

FyWithWings

RedheadDuck

RubberDuck
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Code

 See example
- HeadFirstDesign --> strategy --> Duck

* Improvements
— Duck’s constructor accepts Quack/Fly policy
- Make Duck fields private
— NullQuack, NullFly?

* Discuss:
- Do we even need different types of ducks?
Just use policies for each variant?
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Inheritance vs Composition

* |Inheritance is still good!
- Reduces duplication, supports polymorphism.

- Pull classes that change out of primary inheritance
hierarchy (rigid) and into composition (flexible).
Composition of these uses inheritance for flexibility

* Use inheritance as long as it serves your needs;
you should not be locked in by it.

- Ex Classes: Student, TA, Employee
vs People w/ role class StudentRole, TAROole, ...
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Summary

* Inheritance is limited because:
- local changes have non-local effects

- Inflexible for code maintenance
— no run-time changes possible

* Design Principles
- Separate aspects that change from those that stay the same.

- Classes should be open for extension, but
closed for modification.

- Program to an interface, not an implementation
— Favour composition over inheritance
e Strategy Design Pattern

- Encapsulate possible behaviours into a family of
Interchangeable objects.
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