Strategy
Design Pattern

© Dr. B. Fraser
CMPT 373

b = 4
Image Olya Kobruseva on Pexels

Topics

1) What are the limits of using inheritance?
2) What principles can we use to evaluate an OOD?

3) How can we configure an object with a new
behaviour at runtime? (flexibility)

21-11-03

Case Study

e We want to: Duck

- Create a duck simulator

which shows ducks

swimming and quacking quack(
- Make it flexible to add new swim()
display() =-- abstract method
features

b

MallardDuck RedheadDuck

display() display()

21-11-03

Case Study

* Inheritance good because:

- . Implement
guack() and swim() just once

— gives runtime polymorphism

Duck

quacki)
SWIimi
display) =-- abstract method

']

MallardDuck RedheadDuck

display() display()

21-11-03

Polymorphism

- The specific method called is

decided at runtime based on

- myDuck.display() could run one of
two (or more) implementations.

e Static (compile time) polymorphism:

An
aside

- method overloading, C++ template
classes

Duck myDuck;
if (wantsMallard()) {

myDuck = new MallardDuck();
} else {

myDuck = new RedHeadDuck();
b

myDuck.display();

Duck

gquack(
swimQ
display() =-- ahstract method

—]

MallardDuck RedheadDuck

display() display()

21-11-03

Make Ducks Fly

* Make ducks fly!
- Add fly() to base class

— Derived classes get behaviour for
free

* But, adding fly()

Duck
quackd
swim(
display() =-- abstract method
fly()
MallardDuck RedheadDuck
display(display(

21-11-03

Make Ducks Fly

Duck

quack(

swimi

display() =-- abstract method
fly()

MallardDuck RedheadDuck RubberDuck
display() display(display(
fly()

21-11-03

Make Ducks Fly — Bad?

* Inheritance is bad here because:

Duck

(non-local effects); o

quack()
sWimoQ
display(=-- abstract method

_ MR s

MallardDuck

RedheadDuck

RubherDuck

display()

display()

(fixed when instantiated)

display()
fly()

* |nheritance requires: Polymorphism allows you
all base-class functionality to be to point to different objects,

shared by all derived classes

but once instantiated, a
concrete object has but one

behaviour/method

21-11-03

Separate out Behaviours

* Put fly() into a family of..

Create an supertype
(interface or ABC);

All concrete policies

(behaviours)
implement this
supertype.

- Instantiate the desired fly policy;
each Duck has-a FlyPolicy

;/.s having its own hard coded policy

winterfaces
FiyPolicy

Duck

iyl

T 1

MoFly FhvWithWings

swim
displayl =-- abstract method

JTL

RedheadDuck

MallardDuck

RubherDuck

’21-11-03

display(

display(

display(

Design Principle (Separate Change)

* Design Principle

— Limits the extent of a likely change by encapsulating

that feature inside a class.

=

RedheadDuck

RubberDuck

21-11-03

10

Design Principle (ocp)

* Design Principle: Open-Closed Principle

- Ex: adding a new policy/behaviours should not require
re-coding parts of existing system.

Hot changing existing (tested/debugged) code, such as
at the root of the inheritance tree.

— —

NoFly FiyWithWings RedheadDuck RubberDuck

21-11-03

Design Principle (OCP cont)

Ex: Observable classes can be

extended with new observers without modification

Don’t apply open/closed principle everywhere:
— adds extra level of abstraction (complexity)

— only use in areas expected to change

Predict likely changes with OOD experience and domain

knowledge

wimterfaces
FiyPolicy

i

7%

Duck

=

NoFly

FiyWithWings

RedheadDuck

RubberDuck

21-11-03

12

Design Principle (Interface over Impl.)

* Design Principle

“Interface” = super-type for polymorphism (interface/ABC)

* Code depend on just the supertype,

not a concrete implementation

- the behaviour we get completely depends

on the object we are given

wimterfaces

i

FiyPolicy

7%

NoFly

FiyWithWings

Duck

=

RedheadDuck

RubberDuck

21-11-03

13

Code Example

abstract class Duck {

FlyPolicy flyp; Enhancements
Duck(FlyPolicy flyP) { - Add a SetFIyPoIicyQ to Duck so it
} this.flyP = flyP; can change at runtime.

- Imagine a game where the duck

void performFly() { IS configured/upgraded.

flyP.fly();
}

abstract void display();

class Mallardbuck extends Duck {
MallardDuck() {
super(new FlywithWings());
}

void display() {
System.out.println("I'm a Mallard");
}

}

21-11-03 public/private omitted for clarity 14

Design Principle (Favour Composition)

* Design Principle

— runtime selectable behaviour, not dictated by rigid

compile-time inheritance hierarchy

interface
«FmPuHcy» <
FT
| |
NoFly FiyWithWings

Duck

=

RedheadDuck

RubberDuck

Duc

k

fly()

quack(
swim()
display) =-- abstract method

MallardDuck RedheadDuck RubberDuck
display() displayi) display()
fly()

21-11-03

15

Strategy Pattern

e Strategy Pattern..

— Strategy lets the algorithm vary independently from

clients that use It.

* Other applications

- Tax codes for different provinces

- Defining what to accept when searching file names

awinterfaces
FiyPolicy

G

NoFly

FyWithWings

RedheadDuck

RubberDuck

21-11-03

16

Code

 See example
- HeadFirstDesign --> strategy --> Duck

* Improvements
— Duck’s constructor accepts Quack/Fly policy
- Make Duck fields private
— NullQuack, NullFly?

* Discuss:
- Do we even need different types of ducks?
Just use policies for each variant?

21-11-03

17

Inheritance vs Composition

* |Inheritance is still good!
- Reduces duplication, supports polymorphism.

- Pull classes that change out of primary inheritance
hierarchy (rigid) and into composition (flexible).
Composition of these uses inheritance for flexibility

* Use inheritance as long as it serves your needs;
you should not be locked in by it.

- Ex Classes: Student, TA, Employee
vs People w/ role class StudentRole, TAROole, ...

21-11-03 18

Summary

* Inheritance is limited because:
- local changes have non-local effects

- Inflexible for code maintenance
— no run-time changes possible

* Design Principles
- Separate aspects that change from those that stay the same.

- Classes should be open for extension, but
closed for modification.

- Program to an interface, not an implementation
— Favour composition over inheritance
e Strategy Design Pattern

- Encapsulate possible behaviours into a family of
Interchangeable objects.

’21-11-03

19

