
21-11-03 1

Strategy
Design Pattern

© Dr. B. Fraser
Slides 11CMPT 373 Image Olya Kobruseva on Pexels

21-11-03 2

Topics

1) What are the limits of using inheritance?

2) What principles can we use to evaluate an OOD?

3) How can we configure an object with a new
behaviour at runtime? (flexibility)

21-11-03 3

Case Study

● We want to:
– Create a duck simulator

which shows ducks
swimming and quacking

– Make it flexible to add new
features

21-11-03 4

Case Study

● Inheritance good because:
– : implement

quack() and swim() just once

– gives runtime polymorphism

21-11-03 5

Polymorphism

● ..
– The specific method called is

decided at runtime based on
..

– myDuck.display() could run one of
two (or more) implementations.

● Static (compile time) polymorphism:
– method overloading, C++ template

classesAn
aside

Duck myDuck;
if (wantsMallard()) {

myDuck = new MallardDuck();
} else {

myDuck = new RedHeadDuck();
}
myDuck.display();

21-11-03 6

Make Ducks Fly

● Make ducks fly!
– Add fly() to base class

– Derived classes get behaviour for
free

● But, adding fly()
..

21-11-03 7

Make Ducks Fly

21-11-03 8

Make Ducks Fly – Bad?

● Inheritance is bad here because:
– ..

 (non-local effects);

– ..

– ..

 (fixed when instantiated)

● Inheritance requires:
all base-class functionality to be
shared by all derived classes

Polymorphism allows you
to point to different objects,

but once instantiated, a
concrete object has but one

behaviour/method

21-11-03 9

Separate out Behaviours

● Put fly() into a family of..
– Instantiate the desired fly policy;

each Duck has-a FlyPolicy

● ..
vs having its own hard coded policy

Create an supertype
(interface or ABC);

All concrete policies
(behaviours)

implement this
supertype.

21-11-03 10

Design Principle (Separate Change)

● Design Principle
..

– Limits the extent of a likely change by encapsulating
that feature inside a class.

21-11-03 11

Design Principle (OCP)

● Design Principle: Open-Closed Principle
– ..

– Ex: adding a new policy/behaviours should not require
re-coding parts of existing system.

– ..
not changing existing (tested/debugged) code, such as
at the root of the inheritance tree.

21-11-03 12

Design Principle (OCP cont)

● Ex: Observable classes can be
extended with new observers without modification

● Don’t apply open/closed principle everywhere:
– adds extra level of abstraction (complexity)

– only use in areas expected to change

● Predict likely changes with OOD experience and domain
knowledge

21-11-03 13

Design Principle (Interface over Impl.)

● Design Principle
– ..

“interface” = super-type for polymorphism (interface/ABC)

● Code depend on just the supertype,
not a concrete implementation

– the behaviour we get completely depends
on the object we are given

21-11-03 14

Code Example

● Enhancements
– Add a setFlyPolicy() to Duck so it

can change at runtime.

– Imagine a game where the duck
is configured/upgraded.

abstract class Duck {
FlyPolicy flyP;

Duck(FlyPolicy flyP) {
this.flyP = flyP;

}

void performFly() {
flyP.fly();

}

abstract void display();
}

class MallardDuck extends Duck {

MallardDuck() {
super(new FlyWithWings());

}

void display() {
System.out.println("I'm a Mallard");

}
}

public/private omitted for clarity

21-11-03 15

Design Principle (Favour Composition)

● Design Principle
– ..

– runtime selectable behaviour, not dictated by rigid
compile-time inheritance hierarchy

21-11-03 16

Strategy Pattern

● Strategy Pattern..

– Strategy lets the algorithm vary independently from
clients that use it.

● Other applications
– Tax codes for different provinces

– Defining what to accept when searching file names

21-11-03 17

Code

● See example
– HeadFirstDesign --> strategy --> Duck

● Improvements
– Duck’s constructor accepts Quack/Fly policy

– Make Duck fields private

– NullQuack, NullFly?

● Discuss:
– Do we even need different types of ducks?

Just use policies for each variant?

21-11-03 18

Inheritance vs Composition

● Inheritance is still good!
– Reduces duplication, supports polymorphism.

– Pull classes that change out of primary inheritance
hierarchy (rigid) and into composition (flexible).
Composition of these uses inheritance for flexibility

● Use inheritance as long as it serves your needs;
you should not be locked in by it.

– ..

– Ex Classes: Student, TA, Employee
vs People w/ role class StudentRole, TARole, ...

21-11-03 19

Summary

● Inheritance is limited because:
– local changes have non-local effects

– inflexible for code maintenance

– no run-time changes possible

● Design Principles
– Separate aspects that change from those that stay the same.

– Classes should be open for extension, but
closed for modification.

– Program to an interface, not an implementation

– Favour composition over inheritance

● Strategy Design Pattern
– Encapsulate possible behaviours into a family of

interchangeable objects.

