
21-10-26 1

Observer PatternObserver Pattern

© Dr. B. Fraser

Slides 10CMPT 373 Photo by James Frid from Pexels

21-10-26 2

Topics

1) What is a software design pattern?

2) How can an object be notified when an
event occurs in another object?

21-10-26 3

Software Software
Design Design

PatternsPatterns

21-10-26 4

OOD

● Object Oriented Design (OOD)
..

– Coding techniques to arrange dependencies such that
object can tolerate change

– Prevents changes cascade from one module to another

● Ex: FPS video game tightly coupled to select-gun module
– never refactored because it was

core to the structure of the game

● Common Technique
– Often decouple code by adding

..
between modules (ex: adding an interface)

Practical object-oriented design, Metz (2019)

21-10-26 5

Design Patterns

● Design Patterns
..

● Not Code
– Design patterns are design ideas

– Archetypes (like the mysterious wizard, or hero)
to help us understand the big picture quickly

● Common Language
– Gives common language to more easily discuss

complex solutions

21-10-26 6

Design Patterns

● A design pattern addresses a common problem
– We must learn..

and..
so we can apply it to future problems

● Use in incorrect situations is bad
– it forces us to conform to a design which does not fit

– we must adapt design pattern to our needs

– Ex: CMPT 276 students wanting to apply Singleton to
every class

21-10-26 7

ObserverObserver
PatternPattern

21-10-26 8

Motivation

● Situation
– An object (..) needs to notify

any number of objects (..)
to..

● Diagram
(showing notification, not UML dependencies)

Subject notifies all
observers when it
changes its state
(has an event)

Subject

Observer A
Observer B

Observer C

21-10-26 9

Motivation

● Ex: Network threat analysis
– Model watches network traffic for threats

– UI shows:

● traffic sources & statistics

● latest threat

● highest priority
threat

● etc.

– Model notifies UI
components when
updated analysis
data is available

21-10-26 10

UI: Latest Threat

Idea 1: Model calls UI

● Idea 1: Model call methods in UI
– Model knows which UI objects to call

● Good: Works! Easy to understand

● Bad:
– Couples the model to each parts of the UI

(Couples the subject to each of the observes)

– Since UI already holds reference to model, this would
create a circular dependency

Model depends on
(has reference to)
each individual part
of UI

UI: Statistics UI: Locations

Model

21-10-26 11

Idea 1: The code

● How could model get references to UI?
– Instantiate them? (Coupling!); DI (dependency injection)

● Model tightly coupled to UI:
change to UI requires change to model

– Violates the Open-Closed principle

class ThreatModel {
 private UiThreatList uiList;
 private UiThreatLocations uiLocations;
 private UiThreatLatest uiLatest;

 public void notifyUiOfNewAnalysis() {
 uiList.notifyNewAnalysis();
 uiLocations.notifyNewAnalysis();
 uiLatest.notifyNewAnalysis();
 }
}

21-10-26 12

Idea 2: UI Polls

● Each UI class polls model for updates
– Often model replies that nothing has changed

● Good?
– ..

● Bad?
– ..

– Slow to update UI

UI classes each reference model (good)
but repeatedly ask for changes (bad)

UI: Latest Threat
UI: Statistics

UI: Locations

Model

21-10-26 13

Idea 3: Observer

● Observer Process
– Model defines an Observer interface

– UI classes create Observer objects
(often anonymous classes)

– UI register’s its Observer object with the Model

– Model calls notifyChangedState() (or the like)
to inform Observers of an event

● When no longer needing notifications
– UI unregisters its Observer object from the Model

21-10-26 14

Observer UML

21-10-26 15

Demo

● Open Patterns-Observer IntelliJ Project

● Without Observers
– Package: no_observer.simple

– Class: MainText

● With Observers
– Package: no_observer.simple

– Class: MainText

– UI: MainUI

21-10-26 16

Observer Pros / Cons

● Advantages
– ..

Can change UI and not change the Model’s code

– Multiple observers can register with subject;
all get updated for each change

Ex: Multiple views in a UI

● Drawback
– ..

No compile time references to see what code will be
executed when data changes

21-10-26 17

Adapt Observer Pattern

● Patterns are design ideas: not rigid
– Just 1, or many observers?

– Observer have one notify method, or several?

● Android Adapts Observer Pattern
– Button click:

myButton.setOnClickListener(...)

– Text change in TextEdit:
myEditText.addTextChangedListener(...)

● Java Swing
– myJButton.addActionListener(...)

21-10-26 18

Summary

● Observer
– Objects register an observer to a subject at runtime

– Subject notifies all registered observers when an
event occurs

– Observers can unregister

● Benefits
– Loosely couples subject to the observing object

– Allows for efficient notifications

