
21-10-20  1

Code Reviews

© Dr. B. FraserSlides 09CMPT 373

Image: Christina Morillo on pexels.com



21-10-20  2

Topics

1) Why bother with code reviews?

2) What to look for as I do a code review?

3) How to make code reviews successful?



21-10-20  3

Purpose of a
Code Review

Terminology:
Merge Request (MR) or Change List (CL):
 the work to be reviewed

Based on Google’s Engineering Practices Documentation:
https://google.github.io/eng-practices/



21-10-20  4

Purpose

● Competing goals
– Fight code rot:..

– Allow code to..

● Principle: Seek continuous improvement of the 
code/product; don't allow quality to drop.

● Don't let 'perfect' be an enemy of 'good' 
– OK to accept a MR when it's good enough

– Ex: May have minor inefficiencies or does only some 
of the possible improvements for an area of code

● MR should maintain or improve features and code 
quality



21-10-20  5

Code Review Mentality

● Everyone's goal:
to improve the code and be better developers

● MR Author
– ..

– Ex: My experience with LibreOffice w/ numerous revisions
24 patch sets: https://gerrit.libreoffice.org/c/core/+/62342

● Reviewer
– ..

– Politely help author to write better code

● The average code review should find changes; 
otherwise what's the point?

– Reviewer points out concerns; original author fix them



21-10-20  6

Reviewer's Process



21-10-20  7

Timely

● ..

● Slow reviews are costly
– Hard for dev to move to new task if last MR pending

– Critical feedback is easier to accept if given quickly

● Prioritize doing a code review to unblock rest of team 
– Make doing a pending code review next your task

– Don't interrupt your current task

– Aim for multiple rounds of review in 1 day



21-10-20  8

Where to look

1. Big Picture: MR description
– Is the description clear and concise?

– What are the big parts of the change?

– What issue is being solved?

2. Review the Major Part
– Identify the file(s) that contain the core of the change;

Review this first to understand focus of the change

– If find a major issues,..
don't waste time on rest of lower-level issues 
(likely to re-write)

3. Review the Rest
– Work your way through all the files changed



21-10-20  9

Example

● Consider the following merge request:

● Preview what to look at (actual review later):
– Title / description

– Biggest area of change

– Smaller changes



21-10-20  10

What to review

Source: https://google.github.io/eng-practices/review/reviewer/looking-for.html

Use a
code review

checklist

Image: Pixabay on pexels.com



21-10-20  11

Design

● Look at the high-level design

● Ask:
– Does this design make sense?

..

– What abstraction does this module use?
..

– What does this module's interface hide?

– What will the code now depend on?
..

– How are design heuristics used?

● Prefer composition to inheritance



21-10-20  12

Functionality

● Ask:
– Does the code do what the developer intended?

– ..
empty list, one element, null, 0, -10000000

– For UI changes, consider trying out the feature
(no expectation for the reviewer to be the tester



21-10-20  13

Code

● Limit complexity
– Is any line, function, or class 

too complex?

– Can it be written simpler?

– Does it over-engineer a 
solution?

– Review every line of code

● Naming
– Each name is descriptive and 

a reasonable length for its 
scope

talk about essential 
vs accidental complexity

Software’s
Primary

Technical
Imperative

McConnel, 2004



21-10-20  14

Threads

● Carefully consider possible deadlocks or race 
conditions

– Understand threads used in the system

● Identify data accessible from multiple functions
– Which write? Which read? 

– Is the current locking (mutex/...) sufficient?

– Is the current locking necessary?

● ..
– Limit the scope of access to shared data



21-10-20  15

Comments and Documentation

● Comments
– Clear, easy to read

– Explains why code is needed, not what it's doing

– ..
include all necessary explanation in the code

● Documentation
– If the MR changes how to build, run, test, or deploy 

the project, ensure documentation is updated



21-10-20  16

Style

Source XKCD 
https://xkcd.com/1695/

A style guide can help!



21-10-20  17

Style

● All code must match the style guide
– If outside of style guide then:

match existing code, 
update style guide, 
or don't fight about it.

● Prefix feedback with "Nit" (as in "nit-picking") when
– it's a very minor issue, or

– it's a FYI point to help teach a point, such as a 
comment on using the framework, etc



21-10-20  18

Tests

● Good tests with high code coverage
..

● MR should include tests (as needed)
– There are no tests for tests, so

.. 

● A definition of "done":
– Implements the feature

– Clean code

– Tests have ~100% (good) code coverage; 
all tests pass

● Consider a continuous integration (CI) pipeline setup with 
GitLab to automatically run tests

●



21-10-20  19

Also look for...

● Duplicate code: DRY

● 4C’s: Cohesion, Consistency, Completeness, Clarity

● Command-query separation

● Constructor makes fully-formed objects

● One-name for each idea



21-10-20  20

In-Class Demo

● Look at the following merge request in GitLab

● Comment on the overall MR
– Title

– Usefulness

● Comment on the code
– Design?

– Complexity?

– Style, Comments & Documentation?

– Functionality, Error handling & Tests?



21-10-20  21

Effective Code Review Tips



21-10-20  22

How to provide feedback

● Consider the following comment a reviewer might 
leave; what's wrong with it?

“Why did you use threads here when there’s 
obviously no benefit to be gained from concurrency?”

● What's better about this?
“The concurrency model here is adding complexity to 
the system without any actual performance benefit 
that I can see. Because there’s no performance 
benefit, it’s best for this code to be single-threaded 
instead of using multiple threads.”

Copied from: https://google.github.io/eng-practices/review/reviewer/comments.html



21-10-20  23

Tips

● Discuss the code and ideas, 
not the author or reviewer

● Be respectful and kind

● Explain "why" when its possibly unclear

● Include complements on wonderful work

● Always include at least one feedback comment
(for at least marking!)



21-10-20  24

Reviewing an Experienced Developer

● Hard to review a more experience developer
– Try to learn from their code

● Look for:
– edge cases they may have missed

– error handling

– code that is tricky to read

– unclear abstraction (sometimes it's easier to see the 
big picture)

● Feel confident making suggestions for discussion
– "Would it be cleaner to move this to new function?"

– "Would it be clearer to rename this variable ...?"



21-10-20  25

After the Review

● Don't take it personally
– All comments will be on the code;

each is a suggestion on how to improve.

– Don't be discouraged by others finding improvements

● Making changes
– If code review suggests important changes, 

author makes changes and re-pushes branch;
reviewer re-checks

● When reviewer satisfied, they thumbs-up; 
Repo manager merges



21-10-20  26

Angry Comments

Date Sat, 13 Jul 2013 15:40:24 -0700
Subject Re: [GIT pull] x86 updates for 3.11
From Linus Torvalds <>
...
What the F*CK, guys?

This piece-of-sh** commit is marked for stable, but you 
clearly never even test-compiled it, did you?
....
Seriously, WTF? ... now I have to undo them all because 
this pull request was full of unbelievable sh**.
....
There aren't enough swear-words in the English language, 
so now I'll have to call you perkeleen vittupää just to 
express my disgust and frustration with this crap.

Linus

https://lkml.org/lkml/2013/7/13/132



21-10-20  27

Conflict

● Seek first to understand, then to be understood
– What is the code or reviewer's feedback saying?

– Give person the benefit of the doubt: what is the 
strongest argument they could come up with

● Discuss via video-chat (or in person)
– Let the other person know you hear what they are 

saying

– OK to let them know that you disagree

● Have another person join discussion
– Have them find common ground

● Have the team discuss it



21-10-20  28

Summary

● Developers write code to advance the project

● Code reviews to ensure code quality

● Complete reviews within 24H
– Review every line

● Be kind, be helpful, be critical

● Learn from every review


