J e _,'.'

Code Reviews

Image: Christina Morillo on pexels.com

1) Why bother with code reviews?
2) What to look for as | do a code review?
3) How to make code reviews successful?

Purpose of a
Code Review

Terminology:
Merge Request (MR) or Change List (CL):
the work to be reviewed

Based on Google’'s Engineering Practices Documentation:

httis://iOOﬂle.iithub.io/eni-iractices/

 Competing goals
- Fight code rot...

- Allow code to..

* Principle: Seek continuous improvement of the
code/product; don't allow quality to drop.

* Don't let 'perfect' be an enemy of 'good’
- OK to accept a MR when it's good enough

- Ex: May have minor inefficiencies or does only some
of the possible improvements for an area of code

* MR should maintain or improve features and code
quality

* Everyone's goal:
to improve the code and be better developers

e MR Author

- Ex: My experience with LibreOffice w/ numerous revisions
24 patch sets: https://gerrit.libreoffice.org/c/core/+/62342

e Reviewer

— Politely help author to write better code

* The average code review should find changes;

otherwise what's the point?
— Reviewer points out concerns; original author fix them

Reviewer's Process

* Slow reviews are costly
- Hard for dev to move to new task if last MR pending

- Critical feedback Is easier to accept if given quickly

* Prioritize doing a code review to unblock rest of team
- Make doing a pending code review next your task

— Don't interrupt your current task
- Aim for multiple rounds of review in 1 day

1. Big Picture: MR description
- |Is the description clear and concise?

- What are the big parts of the change?
- What issue is being solved?

2. Review the Major Part
- ldentify the file(s) that contain the core of the change;
Review this first to understand focus of the change

- If find a major issues,..
don't waste time on rest of lower-level issues
(likely to re-write)

3. Review the Rest
- Work your way through all the files changed

* Consider the following merge request:

* Preview what to look at (actual review later):
— Title / description

- Biggest area of change
- Smaller changes

* Look at the high-level design

e Ask:
- Does this designh make sense?

- What abstraction does this module use?

- What does this module's interface hide?
- What will the code now depend on?

- How are design heuristics used?
* Prefer composition to inheritance

* Ask:
- Does the code do what the developer intended?

empty list, one element, null, 0, -10000000

- For Ul changes, consider trying out the feature
(no expectation for the reviewer to be the tester

Software’s
Primary
Technical
Imperative

e McConnel, 2004

21-10-20

- Is any line, function, or class
too complex?

- Can it be written simpler?

- Does it over-engineer a
solution?

- Review every line of code

- Each name Is descriptive and
a reasonable length for its
scope

13

* Carefully consider possible deadlocks or race

conditions
- Understand threads used in the system

* |dentify data accessible from multiple functions
- Which write? Which read?

- Is the current locking (mutex/...) sufficient?
- Is the current locking necessary?

— Limit the scope of access to shared data

e Comments
- Clear, easy to read

- Explains why code is needed, not what it's doing

Include all necessary explanation in the code

 Documentation
- If the MR changes how to build, run, test, or deploy
the project, ensure documentation is updated

UGH, IT'S LIKE YOURAN OCR ON | [IT LOOKS LIKE SOMEDNE |
THIE || APHOD OF A SCRABBLE. | | TRANSCREBED A NAALLEARER [1AVALS

READNG | | BOARD FROM A GAME UHERE | | FORECAST LIHILE. LIOODPECKERS
YOURCODE. | | JAVASCRIPT RESERVED LIORDS | | HAMIERED THEIR SHIFT KEYS,
£ knou, | | COUNTED FOR TRIPLE. PONTS, | | THEN RANDOMLY INDENTED T

e

\

TS LIKE AN EE CUMMINGS | | THIS LOOKS LIKE THE. OUTPUT OF A MARKOV
POEM URITTEN USING ONLY' | | BOT THAT'S BEEN FED BUS TIMETRBLES FROM
THE USERNAMES A UEBSITE | | A CITfy WHERE THE BUSES CRASH CONSTANTLY

\ WHATEVER IT RUNS FINE FOR NOU.

SUGGESTS WHEN THE ONE
YOU WJANT IS TAKEN.
50 DOES A
k BURNING BUs

id A style guide can help!

Source XKCD
https://xkcd.com/1695/

* All code must match the style guide
— If outside of style guide then:
match existing code,

update style guide,
or don't fight about it.

* Prefix feedback with "Nit" (as in "nit-picking") when
- It's a very minor issue, or

- It's a FYI point to help teach a point, such as a
comment on using the framework, etc

* Good tests with high code coverage

MR should include tests (as needed)
— There are no tests for tests, so

* A definition of "done":
- Implements the feature

— Clean code

- Tests have ~100% (good) code coverage;
all tests pass

* Consider a continuous integration (CI) pipeline setup with
GitLab to automatically run tests

Duplicate code: DRY

4C’s: Cohesion, Consistency, Completeness, Clarity
Command-query separation

Constructor makes fully-formed objects

One-name for each idea

* Look at the following merge request in GitLab

e Comment on the overall MR
- Title

- Usefulness

e Comment on the code
- Design?

- Complexity?
- Style, Comments & Documentation?
- Functionality, Error handling & Tests?

| BV 4

Effective Code Review Tips

How to provide feedback

21-10-20

“Why did you use threads here when there’s
obviously no benefit to be gained from concurrency?”

“The concurrency model here is adding complexity to
the system without any actual performance benefit
that | can see. Because there’s no performance
benefit, it's best for this code to be single-threaded
Instead of using multiple threads.”

Copied from: https://google.github.io/eng-practices/review/reviewer/comments.html 22

* Discuss the code and ideas,
not the author or reviewer

* Be respectful and kind
* Explain "why" when its possibly unclear
* Include complements on wonderful work

* Always include at least one feedback comment
(for at least marking!)

 Hard to review a more experience developer
— Try to learn from their code

* Look for:
— edge cases they may have missed

— error handling
— code that is tricky to read
— unclear abstraction (sometimes it's easier to see the
big picture)
* Feel confident making suggestions for discussion
- "Would it be cleaner to move this to new function?"

- "Would it be clearer to rename this variable ...?"

* Don't take it personally
— All comments will be on the code;
each Is a suggestion on how to improve.

- Don't be discouraged by others finding improvements
* Making changes
— If code review suggests important changes,

author makes changes and re-pushes branch;
reviewer re-checks

* When reviewer satisfied, they thumbs-up;
Repo manager merges

Angry Comments

Date Sat, 13 Jul 2013 15:40:24 -0700
Subject Re: [GIT pull] x86 updates for 3.11
From Linus Torvalds <>

What the F*CK, guys?

This piece-of-sh** commit is marked for stable, but you
clearly never even test-compiled it, did you?

éériously, WTF? ... now | have to undo them all because
this pull request was full of unbelievable sh**.

;I.'.h.ere aren't enough swear-words in the English language,
so now I'll have to call you perkeleen vittupaa just to
express my disgust and frustration with this crap.

Ll nus Linus Torvalds apologizes for years of L.

arstechnica.com

21-10-20 https://lkml.org/lkml/2013/7/13/132

26

» Seek first to understand, then to be understood
- What is the code or reviewer's feedback saying?

- Give person the benefit of the doubt: what is the
strongest argument they could come up with

* Discuss via video-chat (or in person)
— Let the other person know you hear what they are
saying

- OK to let them know that you disagree

 Have another person join discussion
- Have them find common ground

e Have the team discuss It

* Developers write code to advance the project
* Code reviews to ensure code quality

* Complete reviews within 24H
- Review every line

* Be kind, be helpful, be critical

Learn from every review

