
21-10-04 1

Coupling
and

Dependency Injection

© Dr. B. FraserSlides 07CMPT 373

21-10-04 2

Topics

1) Let’s help puppies find new homes!

2) What’s wrong with classes depending on other
classes?

3) How can we make our classes more recomposable?

21-10-04 3

Why should I care
about flexible

recomposition of
my classes?

Image by Cynthia Vh on pexels.com

21-10-04 4

Our Task

● Imagine that
Our client: Puppies We Nurture (PWN)

– Design a computer system to help
cute puppies find loving homes

– If it’s not well design, puppies will not
get loving homes, and they will be
sad, and we will be sad

UI needs a
reference to Logic.

How does it get this?

21-10-04 5

Idea 1: UI instantiates Logic

● We need to instantiate the UI & Logic
– What if UI instantiate Logic?

Good?
UI has a reference
to Logic!

Bad?
UI is tightly coupled to
the exact Logic class

class Logic { }

class UI {
 Logic logic = new Logic();
}

21-10-04 6

Idea 1: UI instantiates Logic (cont)

● When UI instantiates Logic,
..

● Why is this bad?
– We need to test UI:

We should test UI independently of Logic

– We need flexibility in how we compose our objects

Testing the UI
Have UI talk to a “mock” logic:
mock has same methods but with
trivial implementations.

If UI instantiates Logic, we must
change UI code to test the UI
with a mock (bad).

21-10-04 7

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

Idea 2: main() Instantiates

● UI knew too much about Logic
– Solution: UI is given a reference to Logic

..

UI is loosely coupled to logic:
It needs a Logic object, but it
does not control which Logic
object.

main() (or JUnit tests) can pick
which specific Logic object to
give to the UI

21-10-04 8

Why is this puppy happy?

● We have a more loosely coupled architecture
– UI needs a Logic, but does not know which Logic

● UI can be given any Logic, such as
– MockLogic, so we can test it

– pass command line arguments to Logic constructor

– pass other constructor arguments (loggers, DB info..)

– share a Logic object between
multiple UIs

– support UI + REST API

– ...

Image: Tuan Nguyen va pexels.com

21-10-04 9

Coupling

21-10-04 10

Coupling Idea
Tightly Coupled Less Coupled

Many classes
all depending
on the same
set of classes

One class
depending
heavily on the
inner workings
of another class

Use a well defined interface

21-10-04 11

Levels of Coupling

● Tightly coupled components
..

– A change to one part cascades to other parts

● Loosely coupled components
..

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

21-10-04 12

Content Coupling

● Content Coupling:
Code in one module only make sense
when you know the..

● Logic, execution, and data are all deeply intertwined

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

class Animation {
 static Animation instance;
 String fileName = "data/s.txt";
 int length;
 String name;

 void loadFromFile() {
 instance = this;
 Parser parser = new Parser();
 parser.parse();
 }
}

class Parser {

 void parse() {
 openFile(Animation.instance.fileName);

 int length = .. // read from file
 String name = .. // read from file

 Animation.instance.length = length;
 Animation.instance.name = name;
 }
}

21-10-04 13

Common Global Data Coupling

● Common Global Data
..

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

class Lens {
 static double lengthInMM;
 void adjust() {
 lengthInMM = Aperture.fStop * 5

/ Shutter.shutterSpeedInS;
 }
}

class Aperture {
 static double fStop;
 void adjust() {
 fStop = Lens.lengthInMM

/ Shutter.shutterSpeedInS;
 Shutter.shutterSpeedInS =

Aperture.fStop * Lens.lengthInMM;
 }
}

class Shutter {
 static double shutterSpeedInS;
}

● Bad because..

– Values can
change any time,
from any where

● Singletons are
global

21-10-04 14

Temporal Coupling

● Temporal Coupling
..

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

void startLaser() {
 Laser l = new SuperHighPowerLaser("red");
 l.init();
 l.setFrequency(14000);
 l.warmUp();
 l.start();
}

● Bad because
– Must know correct sequence of function calls to get a

usable object

● Principle
..

21-10-04 15

Subclass Coupling

● Subclass Coupling
Derived class depends on the base class

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

abstract class FileReader {
 abstract boolean isWellStructured();
 abstract Settings readSettings();
}

class JsonFileReader extends FileReader{
 @Override
 boolean isWellStructured() {
 return ...;
 }

 @Override
 Settings readSettings() {
 return ...;
 }
}

● Drawback..

● This is OK
Done well, this gives
us many advantages

21-10-04 16

Subclass Coupling (cont)

Subclassing can be problematic:

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

class Parent {
 void foo() {
 bar();
 }
 void bar() {
 System.out.println("Woot!");
 }
}

class Child extends Parent {
 @Override
 void bar() {
 foo();
 }
}
// Source: Bloch, "Effective Java"

21-10-04 17

Instantiation

● Instantiating an object of class X
..

● makeBlocks() is coupled to the concrete types
..

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

void makeBlocks() {
 List<Block> data = new ArrayList<>();
 data.add(new PlasticBlock("Red"));
 data.add(new PlasticBlock("Green"));

// ...
}

21-10-04 18

Instantiation (cont)

● Some design patterns work to
address this form of coupling:

– Abstract Factory

– Factory Method

– Prototype

● Each approach allows code to create a new object
without specifying its concrete type (and hence avoid
being tightly coupled to it)

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

21-10-04 19

Pass & Use

● Using an object of type X means..

● printBlocks() is loosely coupled to base types: List, Block
– It works with these, or any of their derived, classes

● Content
● Common
● Temporal
● Subclassing
● Instantiation
● Pass & UseL

o
o
s
e

 T

ig
h
t

void makeBlocks() {
 List<Block> data = new ArrayList<>();
 data.add(new PlasticBlock("Red"));
 data.add(new StoneBlock("Green"));
 data.add(new GlassBlock("Blue"));

 printBlocks(data);
}

private void printBlocks(List<Block> data) {
 for (Block block : data) {
 System.out.println(block);
 }
}

21-10-04 20

Reducing Coupling
in our

Puppy Home Finder

(using DI!)

Image by Dominika Roseclay on pexels.com

21-10-04 21

The Puppy Problem

● Recap
– We want UI to reference Logic

– Don’t want UI to know anything
about instantiating Logic

● Solution
– main() instantiates UI and Logic

– main() passes UI a reference
to Logic

– UI is loosely coupled to Logic

● Benefit
– At runtime, a different Logic class

can be passed to the UI

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

21-10-04 22

Terminology

● Client class depends on or uses a service class

● ..
– ..

..

● Goal
..

– main() creates Logic

– UI uses Logic

● Injector
creates the service and passes
it to the client

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

21-10-04 23

DI Benefits

● Flexibility
..

– Can change which service the client uses by
changing the injector, not the client.

– Client knows nothing about
instantiating service

● Testability
can mock out all services to
test client in isolation

– Tests easily change what
service objects are passed
to the client

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

21-10-04 24

DI Drawbacks

● More code
Initial development requires code in more places:

Adding code to use a new service S requires:
1) create S elsewhere,

2) passed S into constructor,

3) stored in object for use.

Instead of client just: new S();

● Harder to trace code:
don't know concrete class

● Extra interfaces in project

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

21-10-04 25

DI Discussion

● Types of DI
– ..

Pass the service reference to the constructor.

– ..
Pass the service reference in via a setter.

● Injector often will

1) Instantiate all objects

2) Assembles objects into object graph:
 which objects reference which others

3) Calls root object to start application

class Logic { }

class UI {
 Logic logic;

 UI(Logic logic) {
 this.logic = logic;
 }
}

void main() {
 Logic logic = new Logic();
 UI myUI = new UI(logic);
}

21-10-04 26

Example: What needs DI?

class GumballMachine {
 private static final int MAX = 10;
 private GumballFactory gumballFactory;

 private List<Gumball> gumballs = new ArrayList<>();

 GumballMachine() {
 gumballFactory = new GumballFactory();
 }

 void refill() {
 List<Gumball> more = gumballFactory.getMoreGumballs(MAX);
 gumballs.addAll(more);
 }
}

class Gumball{}

class GumballFactory {
 List<Gumball> getMoreGumballs(int max) {
 return ...;
 }
}

21-10-04 27

Example: DI Applied
class Gumball{}

class GumballFactory {...}

class ColoredGumballFactory extends GumballFactory {...}

class BigGumballFactory extends GumballFactory {...}

class FlavouredGumballFactory extends GumballFactory {...}

class GumballMachine {
 private static final int MAX = 10;
 private GumballFactory gumballFactory;
 private List<Gumball> gumballs = new ArrayList<>();

 GumballMachine(GumballFactory gumballFactory) {
 this.gumballFactory = gumballFactory;
 }

 void refill() {
 List<Gumball> more = gumballFactory.getMoreGumballs(MAX);
 gumballs.addAll(more);
 }
}

21-10-04 28

Summary

● Coupling makes it harder to change a system:
changes have non-local effects

● Dependency Injection (DI)
– Reduces coupling by

separating construction from use

– Client code using the object becomes
only loosely coupled because:

● it can accept a derived type, and

● need not know about constructing the object

21-10-04 29

My Notes

 This violates the creation/use rule, but some code has to create something then use it (root of graph).

 Point is to confine creation to a few (one?) places vs spread throughout the code.

- Other design patterns to work with creation: builders, factories, singleton

Strategy pattern and Dependency Injection can be identical:

Strategy allows changing the service object during lifetime.

Dependency Injection more for a single service used throughout lifetime; perhaps less of a "service" role.

Dependency injection an example of Inversion of Control (IoC)

IoC: Allowing other code to call you, vs you always doing the calling.

IoC example without dependency injection: Template pattern where the derived class allows the base
class to call its methods.
= Polymorphism via inheritance

Dependency injection implements polymorphism via composition

