Coupling
and
Dependency Injection




1) Let’'s help puppies find new homes!

2) What's wrong with classes depending on other
classes?

3) How can we make our classes more recomposable?




Why should | care
about flexible
recomposition of
 my classes?

Imagé by Cynthia Vh on pexels.cq{n



Our Task

Our client: Puppies We Nurture (PWN)
— Design a computer system to help
cute puppies find loving homes

- If it’s not well design, puppies will not
get loving homes, and they will be Flove Finding-
sad, and we will be sad Logic

Ul needs a
reference to Logic.
How does it get this?

21-10-04



ldea 1: Ul instantiates Logic

- What if Ul instantiate Logic?

class Logic { }

class UI {
Logic logic = new Logic();
¥

Good? Bad?
Ul has a reference Ul is tightly coupled to
to Logic! the exact Logic class

21-10-04



ldea 1: Ul instantiates Logic (cont)

- We need to test Ul:
We should test Ul independently of Logic

- We need flexibility in how we compose our objects

Testing the Ul
Have Ul talk to a “mock” logic:

mock has same methods but with
trivial implementations.

If Ul instantiates Logic, we must
change Ul code to test the Ul
with a mock (bad).

21-10-04



ldea 2: main() Instantiates

o Ul Logic
— Solution: Ul is given a reference to Logic

class Logic { }

Ul is loosely coupled to loqic:
1 Ul —LM—
¢ asiogic{logic; It needs a Logic object, but it

does not control which Logic
UI(Logic logic) { object.
this. logic = logic;

¥ main() (or JUnit tests) can pick
which specific Logic object to

void main() { give to the Ul

Logic logic = new Logic();

UI myUI = new UI(logic);

}

21-10-04



* We have a more loosely coupled architecture
- Ul needs a Logic, but does not know which Logic

* Ul can be given any Logic, such as
- MockLogic, so we can test it

- pass command line arguments to Logic constructor
— pass other constructor arguments (loggers, DB info..)

— share a Logic object between
multiple Uls

— support Ul + REST API

-
Image: Tuan Nguyen va pexels.com



Coupling




Coupling ldea

Tightly Coupled

Many classes
all depending
on the same

set of classes

One class
depending
heavily on the
inner workings
of another class

21-10-04

Less Coupled

Use a well defined interface

10



* Tightly coupled components

- A change to one part cascades to other parts
* Loosely coupled components

Content
Common
Temporal
Subclassing

Instantiation
Pass & Use




Content

Content Coupling Common

Temporal

Subclassing
° Instantiation

: Pass & Use
Code In one module only make sense
when you know the..

class Animation { class Parser {
static Animation instance;
String fileName = "data/s.txt"; void parse() {
int length; openFile(Animation.instance.fileName);
String name;
int length = .. // read from file

void loadFromFile() { String name = .. // read from file
instance = this;
Parser parser = new Parser(); Animation.instance.length = length;
parser.parse(); Animation.instance.name = name;

} }
3 }

* Logic, execution, and data are all deeply intertwined

21-10-04 12



Common Global Data Coupling

- Values can
change any time,
from any where

* Singletons are
global

21-10-04

Content
Common
Temporal

Subclassing
Instantiation
Pass & Use

class Lens {
static double lengthInMM;
void adjust() {
lengthInMM = Aperture.fStop * 5
/ Shutter.shutterSpeedInsS;

}
}

class Aperture {
static double fStop;
void adjust() {
fStop = Lens. lengthInMM
/ Shutter.shutterSpeedInsS;
Shutter.shutterSpeedInS =
Aperture.fStop * Lens.lengthInMM;

}

}
class Shutter {

static double shutterSpeedInS;
}



- Content
Temporal Coupling Common
Temporal
Subclassing
° Instantiation

Pass & Use

volid startLaser() {
Laser 1 = new SuperHighPowerlLaser('"red");
L.init();
l.setFrequency(14000);

L.warmUp();
L.start();

— Must know correct sequence of function calls to get a
usable object

21-10-04 14



. Content
Subclass Coupling Common
Temporal
Subclassing
° Instantiation

Pass & Use

Derived class depends on the base class

abstract class FileReader {
abstract boolean isWellStructured();
abstract Settings readSettings();

b
class JsonFileReader extends FileReader{
@Override
boolean isWellStructured() {
return ...;
. b
: : @Override
Done We”’ thIS glveS Settings readSettings() {
us many advantages return ...;

}

21-10-04 15



Content

Subclass Coupling (cont) Common

Temporal

Subclassing
Instantiation

Subclassing can be problematic: Pass & Use

class Parent {
void foo() {

bar();
}

void bar() {
System.out.printin("woot!"),
¥

}

class Child extends Parent {
@Override
void bar() {

foo();
}
}

// Source: Bloch, "Effective Java"

21-10-04 16



Content

Instantiation Common
Temporal
Subcla_ss!ng

* |nstantiating an object of class X Hleistion
Pass & Use

void makeBlocks() {
List<Block> data = new ArraylList<>();
data.add(new PlasticBlock("Red"));

data.add(new PlasticBlock('"Green'"));

/]

* makeBlocks() is coupled to the concrete types

21-10-04 17



Content
- Common

Temporal
Subclassing

 Some design patterns work to Instantiation

' ' Pass & U
address this form of coupling: 958 & T8
- Abstract Factory

- Factory Method
- Prototype

* Each approach allows code to create a new object
without specifying its concrete type (and hence avoid
being tightly coupled to It)




Content

PaSS & Use Common

Temporal
Subclassing

* Using an object of type X means.. Instantiation
Pass & Use

void makeBlocks() {
List<Block> data = new ArraylList<>();

data.add(new PlasticBlock("Red"));
data.add(new StoneBlock('"Green"));
data.add(new GlassBlock("Blue'));

printBlocks(data);
b

private void printBlocks(List<Block> data) {
for (Block block : data) {

System.out.println(block);
}
}
* printBlocks() Is loosely coupled to base types: List, Block
- It works with these, or any of their derived, classes

21-10-04 19



Reducing Coupling
In our

Puppy Home Finder
(using DI!) 6 '

21-10-04



The Puppy Problem

21-10-04

We want Ul to reference Logic

Don’t want Ul to know anything
about instantiating Logic

main() instantiates Ul and Logic

main() passes Ul a reference
to Logic

Ul is loosely coupled to Logic

At runtime, a different Logic class
can be passed to the Ul

class Logic { }

class UI {
Logic logic;

UI(Logic logic) {
this. logic = logic;
b
b

void main() {
Logic logic = new Logic();
UI myUI = new UI(logic);

}




Terminology

21-10-04

Client class depends on or uses a service class

— main() creates Logic
- Ul uses Logic
Injector

creates the service and passes
It to the client

class Logic { }

class UI {
Logic logic;

UI(Logic logic) {
this. logic = logic;
b

}

void main() {
Logic logic = new Logic();
UI myUI = new UI(logic);



DI Benefits

21-10-04

— Can change which service the client uses by
changing the injector, not the client.

- Client knows nothing about
Instantiating service

can mock out all services to
test client in isolation
- Tests easily change what
service objects are passed
to the client

class Logic { }

class UI {
Logic logic;

UI(Logic logic) {
this. logic = logic;
b

}

void main() {
Logic logic = new Logic();
UI myUI = new UI(logic);

¥



DI Drawbacks

21-10-04

Initial development requires code in more places:

Adding code to use a new service S requires:

1) create S elsewhere,
2) passed S into constructor,
3) stored in object for use.

Instead of client just: new S();

don't know concrete class

class Logic { }

class UI {
Logic logic;

UI(Logic logic) {
this. logic = logic;
b

}

void main() {
Logic logic = new Logic();
UI myUI = new UI(logic);

¥



DI Discussion

Pass the service reference to the constructor.

Pass the service reference In via a setter.

class Logic { }

: : class UI {
1) Instantiate all objects Logic logic;
2) Assembles objects into object graph: UT{togic {ggi?:{logic_
which objects reference which others ) '

}

void main() {
Logic logic = new Logic();
UI myUI = new UI(logic);

3) Calls root object to start application

}

21-10-04



Example: What needs DI?

class Gumball{}

class GumballFactory {
List<Gumball> getMoreGumballs(int max) {

return ...,
b

}

class GumballMachine {
private static final int MAX = 10;
private GumballFactory gumballFactory;

private List<Gumball> gumballs = new ArrayList<>(),

GumballMachine() {
gumballFactory = new GumballFactory();
3

void refill() {
List<Gumball> more = gumballFactory.getMoreGumballs(MAX);

gumballs.addAll(more);

21-10-04

26




Example: DI Applied

class Gumball{}

class GumballFactory {...}

class ColoredGumballFactory extends GumballFactory {...}
class BigGumballFactory extends GumballFactory {...}

class FlavouredGumballFactory extends GumballFactory {...}

class GumballMachine {
private static final int MAX = 10;
private GumballFactory gumballFactory;
private List<Gumball> gumballs = new ArraylList<>();

GumballMachine(GumballFactory gumballFactory) {
this.gumballFactory = gumballFactory;
b

void refill() {
List<Gumball> more = gumballFactory.getMoreGumballs(MAX);
gumballs.addAll(more);

21-10-04 27




* Coupling makes it harder to change a system:
changes have non-local effects

* Dependency Injection (DlI)
- Reduces coupling by
separating construction from use

— Client code using the object becomes
only loosely coupled because:

* It can accept a derived type, and
* need not know about constructing the object




