GitLab Process

Demo videos linked on course website.

21-01-19 CMPT 373 Slides 04 © Dr. B. Fraser 1

Topics

1) Some notes on Git
a) .gitignore,

b) Commit Messages
c) Reverting

2) How can we organize development?
Use branches and workflows

21-01-19

.gitignore

e .gitignore File
— Lists file types to exclude from Git:..

- Example:
Exclude .bak, build products, some IDE files

* Tag
- “Tag” the project’s contents at a specific commit

- Can later check-out that tag to return to the project
state at that time

- Example Uses
* Track project code going into a release: “V1.51”

21-01-19

Commit Messages

* A good commit message Is required!
- Line 1: .. (<50 characters)
Capitalize your statement
Use imperative: "Fix bug..." vs "fixed" or "fixes"

- Line 2: ..
- Line 3+: .. , wrap your text ~70 characters

Example:
Correct text alignment on Ul

Begin using form layout to ensure Ul elements
line up correctly. Removed use of badtext.lib.

21-01-19

Reverting Changes

e Git checkout = revert

— Overwrite file in working directory
with one from local repo.

* Revert with Caution
- Will lose all uncommitted changes in the file.

- Normally Git does not let you lose changes.

— If in doubt, grab a backup copy (ZIP your folder)
then revert.

 Just make sure you don’t commit the backup!

21-01-19

Branches and Workflow

21-01-19

Issues in GitLab

 GitLab tracks Issues:

* Value of Issues
- Use as product’s backlog (GitLab’s “boards”)

- Assign issue to a dev to show who's working on it
- Update issue with extra info as needed

List Board Labels Milestones
| dd i | Add issues
~ Backlog L Work in Progress 3+ ~ Closed 3
Eligendi dolorem sed alias at dolor Enim id molestiae magnam sunt esse Quo modi officiis quo architecto magni fuga.
ccccc quatur expedita praesentium est. #4 perferendis blanditiis explicabo. #1 #2
Voluptas voluptatem reprehenderit quod ﬁ Quaerat optio voluptate in quia quia dicta Impedit optio cumque eveniet molestiae
perspiciatis vero rerum earum. #5 omnis ek arc hitecto. #3 ipsam sed a consequatur ex nobis. #&
Dol m blanditi m &
Repudiandae aliquid velit quos blanditiis velit Quaerat voluptatem sed rerum et cumque ut 5% nihil quo. #5

explicabo.#z sarum. #8

21-01-19 o=

Branches

. .. Main source code branch in a Git repo.
. .. Latest code on master.

Chaotic Commits
- Too chaotic to have many teammates constantly
committing code to master.

- Solution:..

Branch (Feature Branch)
- Do work on separate track (the branch) from Master

- Commit changes to your branch
- When feature is ready,

21-01-19

Branching and Merge Request (Overview)

e Process Overview

GL = done in GitLab
|IJ = done in IntelliJ

- GL: Pick an issue to implement & create feature branch.
- 1J: Commit/push changes to the branch.

When feature is ready:

- 1J: Merge Master to Feature branch
(resolving conflicts)

- GL: Create merge request to merge branch to Master.

- GL: Branch is deleted when merge request accepted.
(manually remove merged local branch)

21-01-19

Issues and Branching

1. Create issue for bug/feature
- Implementing a feature or fixing a bug should start
with a GitLab issue.

- EX: Issue 14: "Add help button to game activity"
2. Assign issue to yourself

3. Create feature branch in GitLab
- It names the branch..

* EX: 14-game-help-button
- In IntelliJ, checkout the branch:

21-01-19

10

Issues and Branching (cont.)

4. Work on your branch
— Do your work changing files

— Check-In your changes via Git:
* add: tell Git to commit changes In this file
 commit: put changes into local repo on branch
* push: push commit to remote repo on branch

5. Merge Master to Feature Branch
- Get the latest code from master’'s HEAD:
* In IntelliJ: VCS --> Git --> Merge Changes
- Resolve any merge conflicts

- Test

21-01-19

11

Issues and Branching (cont.)

6. Submit a.. via GitLab
- Create request to merge your branch back to master

- Since you already merged Master to Feature
Branch, there should be no conflicts.

- If branch name starts with a number, GitLab will pull
iInfo from the issue.
Otherwise, have message include “Fix #14”

21-01-19

12

Managing Merge Reqguest

* Team members see merge reqguests and.:
- Code review:
Comment on problems they see in the code
(possibly leading to new commits to fix)

— Thumbs-up/down for voting

* Repo Manager accepts merge request
- Accepting merge requests will:

* merge code to master (should be no conflicts)

* delete the source branch
[optional; good practice to clean up]

21-01-19

13

GitLab Workflow Legend

) J_1In GitLab
Feature Branch, Merging Changes, Merge Request | Jin InteliiJ

Create
GitLab issue.

. Teammate
GitLab closes } Feature
associated issue Branches

- } Master

My
Feature
Branch

1. Assign issue to
self

2. Create

feature branch

Create & accept
Merge Request

1. Pull to update.

>]%gif:(eogg%iil 1. Commit any changes.
' 2. Pull to update.
3. Merge Master to
Feature Branch. 1. Pull.

Change files, Change files, 4. Resolve conflicts. 2 Remove local

commit, push. commit, push. 5. Build and test. feature branch.
6. Commit/push changes.

21-01-19 7. Switch to Master branch. 14

| Sequence of Events >

Summary

* Git Detalls
- Merge conflicting changes as needed.

— .gitignore: ignore files/folders
— Descriptive commit messages
— Revert discards changes (git checkout)

e Branches and Workflow
- Create GitLab issues.

- Do work on a feature branch.
- GitLab merge request to merge branch to master.

21-01-19

15

