
21-01-19 1

GitLab Process

Demo videos linked on course website.

© Dr. B. FraserSlides 04CMPT 373

21-01-19 2

Topics

1) Some notes on Git
a) .gitignore,

b) Commit Messages

c) Reverting

2) How can we organize development?
Use branches and workflows

21-01-19 3

.gitignore

● .gitignore File
– Lists file types to exclude from Git:..

– Example:
Exclude .bak, build products, some IDE files

● Tag
– “Tag” the project’s contents at a specific commit

– Can later check-out that tag to return to the project
state at that time

– Example Uses

● Track project code going into a release: “V1.51”

21-01-19 4

Commit Messages

● A good commit message is required!
– Line 1: .. (<50 characters)

Capitalize your statement
Use imperative: "Fix bug..." vs "fixed" or "fixes"

– Line 2: ..

– Line 3+: .. ; wrap your text ~70 characters

Correct text alignment on UI

Begin using form layout to ensure UI elements
line up correctly. Removed use of badtext.lib.

Example:

21-01-19 5

Reverting Changes

● Git checkout = revert
– ..

– Overwrite file in working directory
with one from local repo.

● Revert with Caution
– Will lose all uncommitted changes in the file.

– Normally Git does not let you lose changes.

– If in doubt, grab a backup copy (ZIP your folder)
then revert.

● Just make sure you don’t commit the backup!

21-01-19 6

Branches and Workflow

21-01-19 7

Issues in GitLab

● GitLab tracks Issues:
..

● Value of Issues
– Use as product’s backlog (GitLab’s “boards”)

– Assign issue to a dev to show who's working on it

– Update issue with extra info as needed

21-01-19 8

Branches

● .. Main source code branch in a Git repo.

● .. Latest code on master.

● Chaotic Commits
– Too chaotic to have many teammates constantly

committing code to master.

– Solution:..

● Branch (Feature Branch)
– Do work on separate track (the branch) from Master

– Commit changes to your branch

– When feature is ready,
..

21-01-19 9

Branching and Merge Request (Overview)

● Process Overview
GL = done in GitLab
IJ = done in IntelliJ

– GL: Pick an issue to implement & create feature branch.

– IJ: Commit/push changes to the branch.

When feature is ready:

– IJ: Merge Master to Feature branch
(resolving conflicts)

– GL: Create merge request to merge branch to Master.

– GL: Branch is deleted when merge request accepted.
(manually remove merged local branch)

21-01-19 10

Issues and Branching

1. Create issue for bug/feature
– Implementing a feature or fixing a bug should start

with a GitLab issue.

– Ex: Issue 14: "Add help button to game activity"

2. Assign issue to yourself

3. Create feature branch in GitLab
– It names the branch..

● Ex: 14-game-help-button

– In IntelliJ, checkout the branch:
..

21-01-19 11

Issues and Branching (cont.)

4. Work on your branch
– Do your work changing files

– Check-in your changes via Git:

● add: tell Git to commit changes in this file

● commit: put changes into local repo on branch

● push: push commit to remote repo on branch

5. Merge Master to Feature Branch
– Get the latest code from master’s HEAD:

● In IntelliJ: VCS --> Git --> Merge Changes

– Resolve any merge conflicts

– Test

21-01-19 12

Issues and Branching (cont.)

6. Submit a.. via GitLab
– Create request to merge your branch back to master

– Since you already merged Master to Feature
Branch, there should be no conflicts.

– If branch name starts with a number, GitLab will pull
info from the issue.
Otherwise, have message include “Fix #14”

21-01-19 13

Managing Merge Request

● Team members see merge requests and:
– Code review:

Comment on problems they see in the code
(possibly leading to new commits to fix)

– Thumbs-up/down for voting

● Repo Manager accepts merge request
– Accepting merge requests will:

● merge code to master (should be no conflicts)

● ..

● delete the source branch
[optional; good practice to clean up]

21-01-19 14

Create
GitLab issue.

1. Pull to update.
2. Checkout local
 feature branch.

Change files,
commit, push.

Master

My
Feature
Branch

Teammate
Feature
Branches

Change files,
commit, push.

1. Commit any changes.
2. Pull to update.
3. Merge Master to
 Feature Branch.
4. Resolve conflicts.
5. Build and test.
6. Commit/push changes.
7. Switch to Master branch.

1. Pull.
2. Remove local
 feature branch.

GitLab closes
associated issue

GitLab Workflow
Feature Branch, Merging Changes, Merge Request

Sequence of Events

Legend
 In GitLab
 In IntelliJ

1. Assign issue to
 self
2. Create
 feature branch

Create & accept
Merge Request

21-01-19 15

Summary

● Git Details
– Merge conflicting changes as needed.

– .gitignore: ignore files/folders

– Descriptive commit messages

– Revert discards changes (git checkout)

● Branches and Workflow
– Create GitLab issues.

– Do work on a feature branch.

– GitLab merge request to merge branch to master.

