
21-01-19 1

Getting Your Project Started

Architecture Design
& Starting to Code

© Dr. B. FraserSlides 03CMPT 373

21-01-19 2

Topics

1) How to design a system’s architecture

2) How to do OOD

3) How to get started coding

4) Managing complexity

21-01-19 3

Layered Architectures

21-01-19 4

3-Tier Application

● Good “default” 3-tier application architecture:
– ..

UI displays data, interacts with user

– ..
application logic

– ..
simple data objects and
persistent data storage
(database/file system)

21-01-19 5

3-Tier Application (cont)

● Advantage:
..

– easier to understand and code:
smaller, simpler self-contained parts

– easier to maintain:
changing UI does not change how data is stored

– easier to test:
can test business logic and
data tiers without UI.

21-01-19 6

Example functionality

● Super Mario style game functionality
– Store which direction Mario is facing ____

– Draw Mario facing correct direction ____

– Accept user input to move Mario left ____

– Adjust Mario’s position to left ____

– Calculate if Mario collided with an enemy ____

Options
Pres
Logic
Data

21-01-19 7

Recommended Steps

● Identify architecture
– single app, client-server, cloud based, etc.

● Identify layers (3-Tier)

● CRC cards to analyze high-priority user stories
("Class-Responsibility-Collaborator cards")

– data classes: what information system process

– business logic classes: what classes process the
data

● high-level UML diagram for class relationships

● make paper UI mockup before UI design/coding

21-01-19 8

Class Design

21-01-19 9

UML

● Draw UML Class Diagrams
– Informal: draw on whiteboard to build understanding

– Don’t over-design it:

● identify classes and big features;

● not method names, data types, parameters,

– Industry mostly
uses informal UML

21-01-19 10

Class Connections

«interface»

21-01-19 11

Exercise
● Create a UML class diagram including:

– Book interface

– ElectronicBook, PrintBook, HardCoverBook classes

– Reader uses many books

– Reader loads books from file via a BookFileReader

21-01-19 12

Understanding Design

● Design is
– ..

– ..
You make many mistakes

– ..
No single approach always works

– ..
Many passes to make a good design;
continually evolving during development

21-01-19 13

Tips

● Avoid inheritance
– delay inheritance use till later in development

process and it becomes obviously needed.

– prefer dependency over inheritance.

– use interfaces for polymorphism when possible

● Encapsulation
– Allow access through well designed interfaces.

● Avoid strings: use enums or custom classes

● Use Observer for model/view
– don't initially design the observer classes,

just mention something will be observable.

21-01-19 14

Getting Started Coding:
Tracer Bullets

21-01-19 15

Tracer Bullets?

● Gun Analogy
– Guns can fire tracer bullets to show where it is

shooting

– User can then correct aim

● Software Development
– Hard to know how many new subsystems will

connect in a large new system.

● Software Tracer Bullets..

21-01-19 16

Using Tracer Bullets

● Get started coding with Tracer Bullets
– First implement the entire path through the system,

connecting all subsystems.

– Don't implement all the features/conditions along the
way, but ensure it's a working path.

● Not a prototype
– (Throwaway) Prototype:

investigate one question, and throw away.

– Tracer bullets is production quality code; that is the
foundation of your implementation.

21-01-19 17

Why Use Tracer Bullets

● Tracer Bullets Benefits
– ..

Hard to start coding with a blank page; this gives a
place to start

– ..
Always integrate new modules into full architecture

– Small code body has low inertia:
quicker to change than a large flushed out system

– System is always end-to-end demoable.

21-01-19 18

Managing Complexity

“Primary Technical Imperative:
Managing Complexity”

21-01-19 19

Software Complexity

● Software is complex!
– Software systems arguably among the

most complex things humans have built.

● Limit complexity:
..

– Can actively think of 7 +/- 2 items (short term memory)

– Unnecessary details take up “spots”

● Limits ability to work efficiently;
requires “mental juggling”

– ..

21-01-19 20

Coding Standards

● Reduces complexity of:
– reading code that is formatted in different styles

– writing code:..

● Teams need coding standard specifying:
– Naming conventions (classes, methods, variables,

constants)

– Brackets, indentation, spacing.

– Comments

● Repo manager could lead the effort to identify one.
– CMPT 373 website lists one for Java

21-01-19 21

Encapsulate

● Reasons to Encapsulate
It’s the gift you give yourself!

– You can think about higher-level objects

– You can change details that are hidden

– You can forget about details that are hidden

● Tips
– Private fields; few setters

– ..

● encapsulate creation details
Ex: constructor calls init-functions vs client code

21-01-19 22

Your Project Must...

21-01-19 23

Backlog Requirements

● Maintain Prioritized Backlog (GitLab issues OK)
– Allow re-order/prioritizing user stories

– Allow estimating “points” per story

– Team / customer / instructor / TA can always view

● Creates GitLab issue when starting task
– Merge Request closes one or more issues.

– May create GitLab issues for this iteration’s user stories

– Suggested GitLab issue boards:
Backlog, This Sprint, In Progress, Done

– Suggested GitLab priority labels:
Low, Medium, High, Critical

21-01-19 24

Marking

● For marking:
– “master” branch is marked

– Massive commits ignored

– Merge requests go to master

● If needed, merge master to ‘deploy’ or ‘stable’

– If adding a framework, place stock framework in one
commit, place your changes in another.

● I can ignore the framework, and then count your
contribution!

21-01-19 25

Additional Requirements

● Web based projects runs on the VM at end of each
iteration; customer tries it out from your VM

– If not web based, have an easy installation process
for customer to run

● Git email setting configured with SFU email
git config --global user.name "Aria Smith"
git config --global user.email "asmith@sfu.ca

21-01-19 26

Summary

● 3-tier: presentation, business logic, database
– Encourages good modularity.

● Informal UML for class design.

● Tracer bullets to get started writing and integrating
subsystems

– Avoids big-bang integration

● Manage complexity
– Unnecessary complexity reduces ability to see big

picture.

– Primary technical imperative

