
21-04-28 1

How can 4
(or 4000)

developers work

on a product
at once?

© Dr. B. Fraser

Revision
Control

More Info: https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

For Notes and Videos
 tinyurl.com/ssssGitWorkshop

21-04-28 2

Software!

● Install both:
– Git Command Line

● Linux:
$sudo apt-get install git

● Windows: install Git for Windows
– IDE: VS Code (or IntelliJ, or)

21-04-28 3

Revision Control

● Revision Control
– a system to manage changes to electronic

documents.
– Also called version control, source control,

software configuration management.

● Motivation
– Need to coordinate changes made by multiple

developers.

21-04-28 4

Git Graph / Log / History

source: https://www.atlassian.com/git/tutorials/using-branches/git-merge

21-04-28 5

Git Basics

21-04-28 6

Local Computer

Local Topology Simplified

Local
Repository

Working
Directory

● Local Machine has a
Git repository (Repo)

– Usually in .git/ directory
– Checkout code from repo to

working directory.

21-04-28 7

Local Computer

Remote Topology Simplified

Local
Repository

Working
Directory

● Remote Server has a Git Repo
– Server accessed by multiple

developers
– Local repo syncs up with remote

Remote GitLab Server

Remote
Repository

21-04-28 8

Git Command Diagram

Local Computer

Local
Repository

Working
Directory

Remote Server

Remote
Repository

Staged

add

commit

pull

push

21-04-28 9

Git Details

21-04-28 10

SSH Key

● GitLab verifies you via an SSH key (no passwords)
– Generate the key on each machine you use

(all CSIL machines will share your SSH key)
– Open terminal and run:
$ ssh-keygen -t ed25519
(press enter until done)

– View key; highlight and copy:
$ cat ~/.ssh/id_ed25519.pub

● Or, view it from the Git GUI:
– Run Git GUI
– Go to: Help --> Show SSH Key

You do it!

21-04-28 11

SSH Key (cont)

● On GitLab (gitlab.cs.sfu.ca)
click avatar (top right) --> Settings --> SSH keys

– paste SSH key;
– give it title, such as “Laptop”, “CSIL”, or “Linux VM”
– add it!

● Now GitLab will allow you access!
$ ssh -T git@csil-git1.cs.surrey.sfu.ca

21-04-28 12

Git Workflow

source: https://www.atlassian.com/git/tutorials/using-branches/git-merge

21-04-28 13

Work Flow 1: Setup

● Associate your local repo to a remote repo by either:
– Create a repo in GitLab (gitlab.cs.sfu.ca) and push

some existing code to it; or
– Clone an existing repo to your local PC.

21-04-28 14

Basic Git Sequence for Editing Code

0. Have a working directory with no changes

1. ..
– will "fast-forward" without any conflicting changes

2. ..
– cannot pull with some uncommitted changes

3. ..

4. ..
– automatically merges files without conflicting changes

– manually merge conflicts when required

5. ..
– cannot push if others have pushed code:

“current branch is behind master”, “unable to fast-forward”

“Pull”

Do your work

“Add” & “Commit” changed files

“Pull”

“Push”

21-04-28 15

Your Turn!

1) Create *empty* repo on gitlab.cs.sfu.ca

2) Create Java project in IntelliJ; add a Readme.txt

3) Commit to local repo (this adds and commits)

4) Push to remote repo
 Set origin to git@csil-git1.cs.surrey.sfu.ca.____.git
 (get ____ from GitLab repo’s “clone” button)

If you mistakenly created a non-empty repo, it’s easiest to create a new
empty repo (no readme even!) and push to it.

5) Make another change, commit, push

21-04-28 16

Working in a Team

21-04-28 17

Let’s try it with a partner

Person A

1. Add ‘B’ to your repo

3. Add hello.java, push it
 (loop to print 10 ‘hellos’)

1. Pull

2. Change hello.java at top

3. Push

Person B

2. Clone repo

4. VCS --> Update
 Edit hello.java & push

4. Change hello.java at
 bottom

5. Push (fails)

6. VCS --> Update

7. Push (succeeds!)

21-04-28 18

Merging with Partner

Person A

1. Pull

2. Change hello.java’s
loop (for/while/do-while)

4. Push (fails)

5. VCS --> Update

6. Resolve merges

7. Push

Person B

1. Pull

2. Change hello.java’s
loop (for/while/do-while)

3. Push

8. Pull

21-04-28 19

.gitignore / delete / add / rename

● .gitignore File
– Lists file types to exclude from Git:
– Example:

Exclude .bak, build products, some IDE files

● Delete / Add / Rename Files
– Just delete / create the files in working directory
– Then execute Git commands:

● “add” changed files
● “commit”
● “push”

21-04-28 20

Commit Messages
● A good commit message is required!

– Line 1: Short summary (<70 characters)
– Line 2: Blank
– Line 3+: Details.. ; wrap your text ~70 characters

Make game state persist between launches and rotation.

Use SharedPreferences to store Game's state. Serialize
using Gson library and Bundle for rotation.

Example:

21-04-28 21

Reverting Changes

● ‘git checkout’ to revert files
– discards any uncommited changes to a file.
– Overwrite file in working directory

with one from local repo.

● Revert with Caution
– Will lose all uncommitted changes in the file.
– If in doubt, grab a backup copy (ZIP your folder)

then revert.
● Just make sure you don’t commit the backup!

21-04-28 22

Team Work

● Minimum requirement to committing code:

– When you check in, the full system must compile
and run (and pass all unit tests).

– Only under exceptional circumstances should you
ever check in something which breaks the build.

Don't break the build!

21-04-28 23

Feature Branches

21-04-28 24

Issues and Branches
● GitLab Issues

– Used to track feature changes and bugs

● Feature Branch
– Separate from master branch:

allows you to develop and push your code without it
going into master.

– Used for most changes in bigger projects.

● Process
– Create a GitLab Issue with a branch
– Checkout branch on your PC.
– Code, then push changes.
– Do a GitLab Merge Request

21-4-28 25

Create
GitLab issue.

1. Pull to update.
2. Checkout local
 feature branch.

Change files,
commit, push.

Master

My
Feature
Branch

Teammate
Feature
Branches

Change files,
commit, push.

1. Commit any changes.
2. Pull to update.
3. Merge Master to
 Feature Branch.
4. Resolve conflicts.
5. Build and test.
6. Commit/push changes.
7. Switch to Master branch.

1. Pull.
2. Remove local
 feature branch.

GitLab closes
associated issue

GitLab Workflow
Feature Branch, Merging Changes, Merge Request

Sequence of Events

Legend
 In GitLab
 In Android Studio

1. Assign issue to
 self
2. Create
 feature branch

Create & accept
Merge Request

21-04-28 26

Feature Branch Workflow

● Do a Feature Branch
– GitLab: Create issue
– GitLab: Create branch
– IntelliJ: Pull / switch to branch
– IntelliJ: Code, add-commit-push (repeat!)
– IntelliJ: Merge master to branch; push
– GitLab: Merge Request

See videos on GitLab Workshop Page for more!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

