
21-10-13  1

Agile Manifesto & XP
Based on slides from Software Engineering 9th ed, 

Sommerville.

Slides 8

Plan Driven
Paradigm

Agile
Paradigm

Waterfall
XP

Scrum
Spiral

© Dr. B. FraserCMPT 276



21-10-13  2

Topics

1) What is Agile trying to do?

2) How to choose plan-driven vs Agile?

3) What practices go into Agile (XP) development?

4) How to write tests while writing new code?



21-10-13  3

Rapid software development

● Rapid development and delivery is often the...

for a software system.
– Businesses change fast; practically impossible to 

have stable software requirements.

– Software has to evolve quickly to keep up.

● Agile aims at rapid software development:
– Interleave specification, design 

and implementation.

– Incrementally developed with user 
evaluating each version.



21-10-13  4

Agile methods

● Inspired by dissatisfaction with...
in plan-driven software methods.

● Agile Methods
– Focus on the.. rather than the 

– Based on iterative approach to software development;

– Intended to deliver working software quickly and 
evolve it quickly to meet changing requirements.

● Aim of Agile Methods
– Reduce overheads in the software process 

e.g...

– Respond quickly to changing requirements 
without excessive rework.



21-10-13  5

Agile manifesto

We are uncovering better ways of developing software 
by doing it and helping others do it. 
Through this work we have come to value:

  over processes and tools
       over comprehensive 

documentation
   over contract negotiation 
   over following a plan 

That is, while there is value in the items on the right, we value 
the items on the left more.

Signed by Kent Beck, Robert Martin, Martin Fowler, 
and 14 other founders of Agile development.



21-10-13  6

Scrum & Agile Manifesto Values

● Agile Manifesto Values can be summarized by..

– Perceive current state of the project;

– Adjusting the..  and..  to respond.

● In-Class Exercise:
For each Agile Manifesto Value:

– Explain how it is “Inspect and Adapt”.

– Explain how scrum achieves the value.

Possible Questions!



21-10-13  7

Inspect & Adapt in Scrum

● Scrum is about learning through inspecting and 
adapting:

1. Daily stand-up:..
keep on track

2. Sprint review (demo):..
ensure most valuable features being added

3. Retrospective:..
continuous improvement to the team

Possible Questions:
Explain each



21-10-13  8

Principles of agile methods

Principle Description

Customer is closely involved throughout development.
They provide and prioritize new system requirements 
and evaluate the iterations of the system.

Incremental delivery Software developed in increments. Customer specifies 
priorities for user stories, which influences what is 
implemented first

Recognize and exploit development team's skills. 
Team members should be left to develop their own ways 
of working without prescriptive processes.

Embrace change Expect system requirements to change; 
so design the system to accommodate these changes.

Focus on simplicity in both the software being developed 
and in the... 
Actively work to eliminate complexity from the system.



21-10-13  9

Plan-driven vs Agile Methods



21-10-13  10

Agile Applicability
● Agile applicable for:

– Developing small or medium-sized product

– Requires 
1. Customer willing to be involved in development process

2. Few..   affect  the software.

● Problems with Agile:
– May not.. 

focus on small, tightly-integrated teams.

– Intense interactions may not suit development team.

– Prioritizing change is hard with
...

– Maintaining simplicity requires extra work.



21-10-13  11

Agile & Maintenance

● Maintenance:
– More $ on maintenance than on initial development. 

– To succeed, Agile has to support both!

● Estimated at 80% +/- 
time spent on 
maintenance.

% from James O Coplien in Clean Code by Robert C. Martin (2008)



21-10-13  12

Agile & Maintenance cont.

● Lacking Formal Documentation
– Good documentation supports maintenance.

● BDUF has docs, but..

● ..
expressing the design which is better maintained.

– Agile can create required documents as needed.

● Changing needs in Maintenance
– Agile good at accommodating change.

– Challenging if..
● Process is less formal, so may be poorly 

understood by new group of devs.



21-10-13  13

Choosing agile vs plan-driven

● Most projects use elements of both plan-driven and 
agile processes depending on:

– Need detailed specification and design 
before moving to implementation?

– Is an incremental delivery strategy with 
rapid feedback realistic?

– Is it a small-medium size system being developed?

● Agile most effective with small team
who can... 

– Does it require a lot of analysis before implementation?

● e.g. real-time system with 
complex timing requirements.

Plan Agile

Plan Agile

Plan Agile

Plan Agile



21-10-13  15

Extreme Programming (XP)
Another Agile Process

Created by 
Kent Beck (1999)

Plan Driven
Paradigm

Agile
Paradigm

Waterfall
XP

Scrum
Spiral



21-10-13  16

Extreme Programming (XP)

● Extreme Programming (XP) 
takes best software dev. practices to an extreme

– Short iterations; 
deliver working software often (<2 weeks)

– Frequent communication with customer

– All tests automated and pass for each change

– Based on 12 XP Practices

● Extreme Example
– Normal: Code reviews are good.

– Extreme: ..



21-10-13  17

Select XP Practices

Practice Description

Start small: First develop minimal useful set of 
functions which deliver business value.
Release often: Releases are frequent and 
incrementally add functionality.

Design is only done to support current requirements,
not any possible future ones.

Automated unit tests are written for a class
before the class is written.

Code kept simple and maintainable by 
continuous refactoring by all developers.



21-10-13  18

Select XP Practices cont.

Practice Description

Developers work in pairs, always checking each 
other's work and providing support.

All developers work on all parts of the code. 
Shared responsibility for the code, and 
no one developer has all knowledge about an area.

Changes integrated into system as soon as the are 
completed.

Large amounts of overtime are discouraged: 
would compromise productivity and code quality.

Customer representative (user) is a 
full time member of the development team: 
brings the team requirements and priorities.

Possible Questions:
Pick best practice

to apply to a situation



21-10-13  19

Pair programming
● Developers work in pairs..

– Pairs change so everyone works together.

● Fosters  of code and 
spreads knowledge across the team.

● Reduce problem when key developers leave.

● No one person blamed for bugs.

● Informal review process:

● Encourages refactoring:
– Whole team gets benefit of clean code.

● Productivity with P.P. ≈ two people working independently.



21-10-13  20

XP and change

● Conventional wisdom:..
– It is worth spending time and effort anticipating 

changes as this reduces costs later in the life cycle.

● XP's view: 

– XP uses refactoring to constantly improve code.

– This makes changes easier when they have to be 
implemented.



21-10-13  21

Refactoring

● Developers look for possible code improvements 
and make these improvements..

– This improves the understandability of the code and 
reduces the need for documentation.

● Changes are easier to make because..

– However, some changes require architecture 
refactoring and this is much more expensive.



21-10-13  22

Examples of refactoring

● Refactoring Examples
–  to make its purpose clearer.

–  to make a long function shorter 
or reduce duplicate code.

–  to split a class which 
does 2 things into two classes.

● Single Responsibility Principle (SRP)
–

– It should have only one reason to change.



21-10-13  23

XP Testing:
Test driven development



21-10-13  24

Overview of testing in XP

● Testing is Central to XP
–  

● Features of XP Testing
– Test-driven development (TDD).

– User involvement in test development and 
validation.



21-10-13  25

Test automation

●

before the task is implemented. 
– Automated testing framework (JUnit) runs stand-

alone tests which simulate input and check result. 

● Tests run whenever new functionality added.
– Tests can be run quickly and easily.

– Catch problems immediately.

● Automated verification
– Gives developers the confidence and 

security of knowing nothing broke.

–



21-10-13  26

Test-driven development

● Test-driven development (TDD):

● Idea: 

– Write a test that fails, add code to make it pass. 



21-10-13  27

Process

1. Find some small functionality to implement
– 2-3 lines of code.

2. Write the JUnit test for it.

3. Run all tests
– Will give you...

4. Write code to fix the bug.

5. Run all tests, hopefully gives you a...
– Refactor as required.

6. Goto 1.



21-10-13  28

TDD & Pair Programming Game

● Take turns while pairing. Valid moves are:
– If project in “Red”:

● Make it “Green”:..

– If project in “Green”:

● ..

● ..

● ..

● TDD Pair Programming Game Demo w/ Student
– In Android Studio, create Tail.java; code & JUnit:

public static int 
lengthOfLongestAscendingSequence(int[] data);



21-10-13  29

Benefits of TDD
● ..

– Each line of code written to satisfy a test,
so all lines are tested.

● ..
– Run old tests after new changes to 

prove you have not broken previous features.

– A regression test suite is continually developed as a 
program is developed. 

● ..
– When a test fails, it should be obvious where the 

problem lies (the new stuff!).

● ..
– The tests themselves are a form of documentation

that describe what the code should be doing. 



21-10-13  30

Summary

● Agile: incremental development focused on
– rapid development,

– frequent releases,

– reducing process overheads,

– producing high-quality code.

● Agile vs plan-driven depends on type of software

● XP Practices: good practices done to the extreme.
– TDD to ensure well tested code


