Coping with Change and Risk

CMPT 276
© Dr. B. Fraser
Based on slides from Software Engineering 9th ed, Sommerville.
• How can software projects manage change?
 – What is prototyping?
 – What is incremental development?
Coping with change

- Change is inevitable in all large software projects:
 - Business changes lead to new (or changed) system requirements.
 - open up new possibilities.

- Cost of change = Cost of reworking completed work
 (re-analyzing requirements, design, re-coding)
 + Cost of..
Reducing the cost of rework

- **Change avoidance:**
 - software development process includes.. before significant rework is required.
 - **Example:** develop a prototype system to show a key (uncertain?) features to customers.

- **Change tolerance:**
 - software development process is designed to..
 - Usually *incremental development*.
 - Changes may be in a *future increment* (no rework), or may have to alter part of existing system.
Change avoidance with (Throwaway) Software Prototyping
Throwaway Software Prototyping

- **Prototype:**
 - used to try out options.

- "Throw-away" code:
 - Prototypes could ignore things like code quality, error-handling, or testability.
 - Built to **answer a specific question**, not to see if the whole system will work.
Software prototyping

- A prototype can be used in:
 - to help with requirements elicitation and validation;
 - to explore options;
 - For example, a paper prototype of the UI.
Benefits of prototyping

- **Benefits of Prototyping:**
 - Improved *system usability*.
 - A closer match to users’ *real needs*.
 - Improved *design quality*.
 - Improved *maintainability*.
 - Reduced development effort.
Prototype development

- Focus on **poorly understood** areas of the product;
- **Error checking** and **recovery** may be omitted;
- Focus on **rather than** requirements.

Ex: Accessing hardware, screen layouts, database access.

Ex: Security, performance, etc.

Prototypes...

not a good basis for a production system:
- Likely below software **quality** standards.
- Normally **undocumented**;
- **Degraded structure** from rapid change (no refactoring)
- Hard to tune it to meet **non-functional requirements**.
Change tolerance with

Incremental Delivery
Incremental delivery

• Development and delivery are
 ..
 – Each increment delivers some required functionality.

• Prioritized user requirements
 – highest priority ones included in early increments.

• Requirement changes
 – Once the development of an increment is started,
 ..
 – Requirements for later increments continue to evolve.
Incremental development and delivery

• **Incremental development**
 - Develop the system in increments.
 - Increment before proceeding to development of next increment;
 - Normal approach used in..

• **Incremental delivery**
 - Deploy an increment for..
 - More realistic evaluation because of..
 - Difficult to implement for replacement systems as increments have less functionality than old system.
The increment could fit into a larger system plan (BDUF), or be developed on the fly with evolutionary planning (Agile).
Incremental delivery advantages

- **Benefits Include:**
 - New functionality delivered with each increment so system *functionality is available earlier*.
 - Early increments act... to help elicit requirements for later increments.
 - Lower risk of overall project failure.
 - Highest priority requirements implemented first and...

What is a difference between an early increment and a prototype?
Incremental delivery problems

- **Common Functionality:**
 - Most systems require a set of basic facilities that are used by different parts of the system.
 - Hard to identify common facilities because requirements are not defined in detail until..

- **Contracts:**
 - Specification developed iteratively with the software.
 - Complete system specification can be needed as part of the.
Summary

• Processes should cope with change.
 – Change avoidance:
 • **Throwaway prototyping** helps avoid poor decisions on requirements and design.
 – Change tolerance:
 • **Iterative** development and delivery allows changes without disrupting whole system.