
22-09-19 1

Testing

Slides #3 CMPT 276 - © Dr. B. Fraser

22-09-19 2

Topics

1) What are common types of testing?
a) Testing like a user: through the UI.

b) Testing like a dev: through the code.

2) How can we write code to test code (via JUnit 5)?

3) How to do effective unit testing?

4) What makes a good bug report?

22-09-19 3

Types of Testing

22-09-19 4

..

Types of Testing

● Test to find bugs and to show a product works.

● How can we test (types of testing)?
– ..

● Test overall application’s features

● “Is the program acceptable to customer?”

– ..

● Test each class in isolation

● “Does this class do anything wrong?”

● Testing can be done by a human (manual)
or by code (automatic).

22-09-19 5

..

White vs Black Box

● When creating tests,
do you have access to the system’s code/design?

– Knowing the code can help you..

– Not knowing the code can help you see the big picture
and..

● ..
– Can see source code when writing tests.

– Also called clear box or glass box.

● ..
– Have no access to system internals.

– Often for user interface testing.

22-09-19 6

Acceptance Tests

22-09-19 7

Acceptance Testing

● Acceptance Testing:..

– Are needed features
included?

– Do the features work as
expected?

● Can generate acceptance tests
from..

22-09-19 8

..

Ex: Requirements to Acceptance Tests

Requirement

● Scroll bar’s slider shows the
proportion of how much of
the content is shown in the
window.

● Scroll bar only visible when
all content can not be
shown in window at once.

Acceptance Tests

● With enough content to
need scroll bar, double
amount of content and
slider should be half as tall.

● With enough content to
need scroll bar, double
window height and slider
height should double.

● ... etc.

22-09-19 9

Acceptance Testing details

● Acceptance tests often manually done by a tester.

● Acceptance tests may be part of deploying a product
– Alpha testing: users try out software at developer’s site.

– Beta testing: software deployed for limited
initial testing at customer’s site.

Quality Assurance Tester Job:
● Writing Test Cases and Scripts based on business and functional

requirements
● Executing high complexity testing tasks
● Recording and reporting testing task results
● Proactively working with project team members to improve the quality

of project deliverables

http://www.bctechnology.com/jobs/Avocette-Technologies/127103/Quality-Assurance-
Tester-(6-Month-Contract-and-Permanent).cfm

22-09-19 10

Unit testing
with JUnit

22-09-19 11

JUnit Unit Testing

● Unit Tests..

● Purpose:
 For you to “know” your code works.

– Should test ~100% of a class.

– Helps improve quality of code.

– Supports aggressive refactoring because you can..

22-09-19 12

JUnit Context

● You create a test class which is..

● JUnit test runner executes your test class.

“Real” class
to test.

Runs JUnit
tests.

You
implement

22-09-19 13

..

Basic JUnit Architecture

JUnit:
“Test Runner”

executes
methods with..

22-09-19 14

..

..

..

package ca.cmpt276.junit5;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;
public class PuppyTest {

@Test

void testCreate() {
Puppy rover = new Puppy("Rover", 100);
assertEquals("Rover", rover.getName());
assertEquals(100, rover.getWagRate());

}

@Test

void testSetName() {
Puppy rover = new Puppy("Rover", 100);
rover.setName("Fluffy");
assertEquals("Fluffy", rover.getName());

}

//... more tests omitted.
}

JUnit 5 Example

New instance of
PuppyTest created for

each JUnit test method:

Behaviour of one..

Tests are done using..

= Puppy.java & PuppyTest.java

Test runner executes all
methods with

@Test annotaiton

22-09-19 15

Test Runner
● Test runner executes @Test methods in test class.

● Displays results & coloured bar
– Green-bar..

– Red-bar..

22-09-19 16

..

JUnit 5 Asserts: Basics
public class JUnitAssertTest {

@Test
public void demoAssertEquals() {

String name = "Dr. Evil";
assertEquals("Dr. Evil", name);

}
@Test
public void demoOtherAsserts() {

int i = 10;
assertEquals(10, i);
assertTrue(i == 10);
assertFalse(i == -5);

}
@Test
public void demoAssertEqualsOnDouble() {

double weight = (1 / 10.0);
assertEquals(0.1, weight, 0.000001);

}
// Array support: assertArrayEquals()

}

Doubles have limited precision.
3rd arg is the “delta” to tolerate

22-09-19 17

..

JUnit 5 Asserts: Exceptions

public class JUnitAssertTest {
private void throwOnNegative(int i) {

if (i < 0) {
throw new IllegalArgumentException();

}
}
@Test
void testThrows() {

assertThrows(IllegalArgumentException.class, () -> {
throwOnNegative(-1);

});

}
@Test
void testNoThrows() {

throwOnNegative(1);
}

}

Use to test exception throwing..

IllegalArgumentExecption

Code likely in class under test
(shown here for simplicity)

Lambdas: needs Java 1.8+ compatibility
 File --> Project Structure --> Module -->
 Select "app" in list, select Properties tab
 Set Source Compatibility to 1.8 (Java 8)
 Set Target Compatibility to 1.8 (Java 8)

22-09-19 18

..

JUnit 5 Asserts: Disable

public class JUnitAssertTest {

@Disabled("DB does not yet support reconnecting.")
@Test
void testDBReconnect() {

// ... put your JUnit tests of the not-yet implemented code....
fail(); // Automatic fail...

}

}

Ignore the test so
"to-be-done" style tests

do not break testing.

Gives warning message
to highlight that some
tests not yet enabled.

..

22-09-19 19

Android Studio Demo

1) Create JUnit Test Class:
1) Open class under test,

2) Click class name, alt-enter --> Create Test

3) Select JUnit 5, click OK

4) Select ...\app\src\test\java\..... folder

2) Execute Tests:
1) Run --> Run... (alt-shift-F10)

2) Select your JUnit test class.

3) Run app: Run --> Run...; select “app”

IntelliJ JUnit Video Tutorials:
Basics: https://www.youtube.com/watch?v=Bld3644bIAo&t
More: https://www.youtube.com/watch?v=xHk9yGZ1z3k&t

22-09-19 20

Unit Testing Discussion

22-09-19 21

FIRST: Properties of Good Tests

● ..
– Run all tests very often; slow tests less useful

● ..
– Each test has a small “Single Responsibility”

● ..
– Not random: if they fail for you, they fail for me

● ..
– User does not have to read through output

● ..
– Write tests soon after (before?) production code

Langr 2015 (Pragmatic Unit Testing in Java 8 with JUnit)

22-09-19 22

Effective unit tests

● Unit testing should be..

● Test ‘class under test’ for:
– Works for expected normal inputs.

– Works for extreme or invalid inputs.

● Testing strategies
–

● group input values which are "similar"

● test based on these groupings.

–

● use guidelines to choose test cases.

● guidelines cover common programming errors.

22-09-19 23

Input Vector

● Input Vector
..

– Ex: printf(“Hello %d”, 42);
Has input vector {“Hello %d”, 42}

– When calling a function with an input vector, the
function follows a path of execution through its code:

Ex: the “then” for one if statement, and the “else” for
another

● Test Vectors
..

– Use a small (but good!) set of test vectors to keep
testing efficient

22-09-19 24

Equivalence Class Partition (ECP) Testing

● Equivalence Class
– A region of values in the input data for which

..

– The boundaries between these regions are the
Equivalence Class Partitions

● Ex: Multiplying two integers

– Input: Positive vs negative input values
yields positive vs negative output.

int multiply(int a, int b) {
 return a * b;
}

22-09-19 25

Equivalence Classes

● Identify the equivalence classes, and the
equivalence class partitions for the following:

/** Return a grade based on the percent:
 * 50 to 100 = 'P'
 * 0 to <50 = 'F'
 * otherwise throw an exception.
 */
char assignGrade(int percent);

22-09-19 26

Equivalence Class Partition (ECP) Testing

● Since all values inside an EC behave similarly:
– it is likely that the paths of execution for all

input vectors within a single equivalence class
are the same.

– Therefore, with ECP Testing we test one value from
each equivalence class. Therefore,..

● Example
char assignGrade(int percent);

We might test:.. -10, 10, 60, 110

22-09-19 27

Boundary Value Analysis

● ECP testing is..
– Testing one value per partition does not adequately

test the boundaries of the partitions.

– Could have boundary too high/low:

● off by one

● < vs <=

● Boundary Value Analysis
– For each ECP (the boundary between two

equivalence classes),
..

22-09-19 28

Test Vector Selection
● Complete the table

/** Print age to screen.
 * Throw an exception
 * if age < 0 or > 120.
 */
void printAge(int age);

Equivalence
class partitions

Equivalence
class partition
test vectors

Boundary
value analysis
test vectors

22-09-19 29

CORRECT: Boundary conditions

● Think about the following for boundary conditions
– Conformance: Does value conform to

expected format?

– .. Is array of values ordered correctly?

– Range: Is value within min/max?

– Reference: Consider “external” code references

– .. Does value exist (not null? not zero?)

– Cardinality: Are there exactly enough values

– .. Everything happen in order?
At right time? Fast enough?

Langr 2015 (Pragmatic Unit Testing in Java 8 with JUnit)

22-09-19 30

General testing guidelines

Choose test vectors based on some rules-of-thumb or
guidelines to try and catch many common errors:

● ..

● Cause buffers to overflow;

● Force calculation result to be too large (or small):
(overflow & underflow).

● Testing With Arrays:
– Different # elements. Ex..

– Put desired element..

22-09-19 31

Code Coverage

● Code Coverage:..

● Want ~100% Code Coverage
– All lines of code executed at least once.

– Quite hard to achieve (complex error cases, asserts, ..)

– This should almost be the bare minimum:
Tests run..

● Demo (Android Studio or IntelliJ)
Run --> Run PuppyTest with Coverage

22-09-19 32

Test Code Quality

● Unit tests are integral part software development:
..
as the rest of the project.

– Only possible if you don’t think of tests as throw-away or
beneath your coding skill.

● Good code quality makes maintenance easier
– Keeps tests current and relevant

– Poor code makes tests obsolete fast (and useless)!

– Unreliable tests cause developers to lose trust.

22-09-19 33

Finding Many Bugs

● If you find a function which is quite buggy, don’t debug it:
..

– Good unit testing only finds..

– A hacked together routine indicates poor
understanding of its requirements:

● If many bugs are discovered now,
then many bugs will be encountered later!

● More tests cannot solve this problem:
Trying to improve software quality by increasing
the amount of testing is like trying to lose
weight by weighing yourself more often.

McConnel, 2004

22-09-19 34

Bug reports

22-09-19 35

Bug Report

Bug Report

Component
Description

Concise, 1 line description of problem.

Which product had error.

Actions to cause error.
Does it always occur, or only occasionally?
Create simple example to demonstrate.

What the steps should do, vs what actually do.
Ensure it is actually an error not a feature:
"Working as intended"?

Software version, OS, hardware, drivers, ...

● Submit a bug report when a defect is found.

22-09-19 36

Bug Report Example

Inspired by an actual bug report submitted by someone I know.

Add example:
Steve’s flash/crash?

Bug Report

Component
Example

Summary Upload crashes on MP3 file drag and drop.

Component File upload window.

Steps to
Reproduce

1. Open app to upload window.
2. Select two MP3 files in file explorer.
3. Drag into upload window.
4. Application flashes and crashes.
Crash is repeatable.

Expected vs
Actual result

Expected “No flashing and no crashing”
(files should upload without app crashing)

Environment ShareFiles 1.2.5, Win10, Dell XYZ, Norton 3

22-09-19 37

Bug suggestions

● The better the bug report, the more likely the
developer is to identify the problem and fix it.

● Example files:
– For an office application, or a compiler, provide an

example file which causes the problem.

● Screenshots:
– A picture of the problem is great at definitively

showing what happened.

– Developers are often..

22-09-19 38

Life-cycle of a bug

● Some resolutions:
– Fixed

– Duplicate

– Won't Fix

–

–

● "ID-10-T"

● "PLBKAC"

– Enhancement /
feature request

Image Source: Bugzilla – lifecycle. Mozilla guidelines and bugzilla.

22-09-19 39

22-09-19 40

Summary

● White-box knowledge of internals;
Black-box uses external interface only.

● Test Types
– Acceptance for checking features in product.

– JUnit for detailed unit testing (white-box):
assert...(), @Test, @Disable, assertThrows().

● Good JUnit tests
– Equivalence Class Partition testing, Boundary value

analysis, guidelines for testing.

– High-quality test code: maintain it!

● Bug reports include
– Description, steps to reproduce, environment info.

