
20-09-12 1

How can 4

(or 4000)

developers work

on a product

at once?

CMPT 276 © Dr. B. FraserSlides #2

Revision
Control

More Info: https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

20-09-12 2

Revision Control

● Revision Control:
–

– Also called version control, source control,
software configuration management.

● Motivation:
– Need to coordinate changes made by multiple

developers.

– Need a reliable system to ensure changes
are ..

20-09-12 3

Git Graph / Log / History

source: https://www.atlassian.com/git/tutorials/using-branches/git-merge

20-09-12 4

Overview of what we’ll learn
in this and later lessons on Git

1. Git Basics
(Good for ~1 person)

2. Merging Conflicts
(Needed for 2+ people)

3. Using GitLab
(Managing a team)

..

20-09-12 5

Local Computer

Local Topology Simplified

Local
Repository

Working
Directory

● Local Machine has a
..

● The latest code in the repo
can be checked-out into the
working directory.

– Head: the latest version of
the code.

20-09-12 6

Local Computer

Remote Topology Simplified

Local
Repository

Working
Directory

● Remote Server has a Git Repo
– Server accessed by

multiple developers

– Local repo syncs up
with remote

Remote Server

Remote
Repository

20-09-12 7

Distributed

● Distributed Version Control
– Git has..

each “local repo” is a full and complete repo.

– Can work off-line (on a plane) and still commit to the
local repo. Later sync up with the remote repo.

● Git Servers
– Often the remote repo is a dedicated Git server such

as GitHub or GitLab.

– These systems add extra team collaboration
and discussion tools (more later).

20-09-12 8

Git Command Diagram

Local Computer

Local
Repository

Working
Directory

Remote Server

Remote
Repository

Staged

add

commit

pull

push

20-09-12 9

Work Flow 1: Setup

● Associate your local repo to a remote repo by either:
– Create an empty repo in GitLab (gitlab.cs.sfu.ca)

and push some existing code to it; or

– .. an existing repo to your local PC.

20-09-12 10

Work Flow 2: Changes
● Do some work in working directory

– create new files, change files, delete files, etc.

● ..
– Stages the changes as being ready to commit.

– Also used for adding files to Git (tracking them)

● ..
– Commit all staged changes to local repo.

● ..
– Send committed changes to remote repo.

● ..
– View the state of local file changes

20-09-12 11

Work Flow 3: Other’s Changes

● Other team members will push some changes to the
repo which you then want

● ..
– Get changes from remote repo and apply them to

local repo and working directory (move to head).

– If there are any conflicting changes, may need to do
a merge (more later).

● ..
– At any time, can view the changes

people have made.

20-09-12 12

Git Tools

● Command Line
– Git is very often accessed via its command-line tools

– Git commands look like:
git clone git@csil-git1.cs.surrey.sfu.ca:myTeam/daProject.git
git commit

● GUI Integrated Tools
– ..

but low-level understanding is required!

– Can be inside IDE: Android Studio

– Can be integrated into file system: TortoiseGit

– Lecture: command line to understand the tool;
Assignments: IDE for convenience (likely).

20-09-12 13

Command-line Demo

● Git Command Demo
[create repo on csil-git1.cs.surrey.sfu.ca]

– git clone <git@csil-git1.cs....>

[now edit file hello.txt]

– git status

– git add hello.txt

– git commit

– git push

– git log

– git pull

20-09-12 14

Git Details

1. Git Basics
(Good for ~1 person)

2. Merging Conflicts
(Needed for 2+ people)

3. Using GitLab
(Managing a team)

20-09-12 15

SSH Key
● GitLab verifies you via an SSH key (no passwords)

– Generate the key on each machine you use
(all CSIL machines will share your SSH key)

– In Linux, open terminal and run:
$ ssh-keygen -t ed25519

In Windows, follow guide for Git for Windows

– View key; highlight and copy:
$ cat ~/.ssh/id_ed25519.pub

● On GitLab (gitlab.cs.sfu.ca)
click avatar (top right) --> Settings --> SSH keys

– paste SSH key; give title “CSIL”; and add it.

● Now GitLab will allow you access!
$ ssh -T git@csil-git1.cs.surrey.sfu.ca

20-09-12 16

Basic Git Sequence for Editing Code

0. Have a working directory with no changes

1. ..
– will "fast-forward" without any conflicting changes

2. ..
– cannot pull with some uncommitted changes

3. ..

4. ..
– automatically merges files without conflicting changes

– manually merge conflicts when required

5. ..
– cannot push if others have pushed code:

“current branch is behind master”, “unable to fast-forward”

20-09-12 17

Try it yourself (after lecture) :)

1) Create *empty* repo on gitlab.cs.sfu.ca

2) Create project in Android Studio; add a Readme.txt

3) Commit to local repo (this adds and commits)

4) Push to remote repo
 Set origin to git@csil-git1.cs.surrey.sfu.ca.____.git
 (get ____ from GitLab repo’s “clone” button)

If you mistakenly created a non-empty repo, it’s easiest to create a new
empty repo (no readme even!) and push to it.

5) Make another change, commit, push

20-09-12 18

Merge Conflict Demo

● Show demo of conflicting changes being made by
two team members at once

– Pulling with uncommitted conflicts fails

– Pushing before merging fails

– Commit my changes

– Pull to trigger merge

– When merge done then add/commit/push

● Android Studio has VCS --> Update Project
– Which works with uncommitted conflicts

– It automatically stash changes to get
around having to do extra commit

20-09-12 19

.gitignore / delete / add / rename

● .gitignore File
– Lists file types to exclude from Git:

– Example:
Exclude .bak, build products, some IDE files

● Delete / Add / Rename Files
– Just delete / create the files in working directory

– Then execute Git commands:

● “add” changed files

● “commit”

● “push”

20-09-12 20

Commit Messages

● A good commit message is required!
– Line 1: .. (<70 characters)

Capitalize your statement
Use imperative: "Fix bug..." vs "fixed" or "fixes"

– Line 2: ..

– Line 3+: .. ; wrap your text ~70 characters

● 276 Pair Programming
– If pair programming, add pair’s user ID at start:

“[pair: bfraser] Make game state persist”

Make game state persist between launches and rotation.

Use SharedPreferences to store Game's state. Serialize
using Gson library and Bundle for rotation.

Example:

20-09-12 21

Reverting Changes

● ‘git checkout’ to revert files
– ..

– Overwrite file in working directory
with one from local repo.

● Revert with Caution
– Will lose all uncommitted changes in the file.

– Normally Git does not let you lose changes.

– If in doubt, grab a backup copy (ZIP your folder)
then revert.

● Just make sure you don’t
commit the backup!

20-09-12 22

Revision Control
Generalities

20-09-12 23

Merge vs Lock

2 Competing ways revision control protects files:

● Checkout-Edit-Merge
– Merge support allows concurrent access to a file so

multiple developers can work on same code at once

– But can lead to...

● Lock-Edit-Unlock
– Locking prevents merge conflicts by..

● "I can't make any changes until Bob finish!"

– Adds pressure to make changes quickly..
 "I need that file now!”

20-09-12 24

Revision Control Features

● Atomic operations
–

– Change is applied all at once:
no other changes applied while you're checking in.

● Tag
– Mark certain versions of certain files as a group.

Ex: "Files for Version 1.0 of product".

– Able to easily..
of the files later to fix bugs etc.

● "Get all files exactly as the were in
Version 1.0 (three year ago)".

20-09-12 25

Team Work

● Minimum requirement to committing code:

– When you check in, the full system must compile
and run.

– Only under exceptional circumstances should you
ever check in something which breaks the build.

20-09-12 26

Committing Frequency

● Expected Commit Frequency
– Commit little changes to local repo very often

..

– Once some work is more stable, push all the
changes at once to remote repo..

● CMPT 276
– Committing / pushing this frequently gives visibility

to your contributions; helps for marking discussions!

– In a ‘professional’ project, you would tailor your
 commits/pushes to the work you are doing,
and squash small commits together into bigger
more meaningful ones.

20-09-12 27

Coding with Source Control

●
// Removed Jan 2002 for V1.01
// cout << "Dave; I wouldn't do that, Dave.\n";

– Put meaningful comments into checkins!

●
#if 0
// Unneeded, but left 'cuz someone may want it...
......
#endif

●
// Written by Dr. Evil
....

20-09-12 28

Summary

● Revision control a critical tool for development.
– Git is a distributed revision control system.

● Operations:
– clone, add, commit, push, pull, merge (later)

● Git Details
– Merge conflicting changes as needed.

– .gitignore, revert (git’s checkout)

● Basic Features
– Atomic operations, tags/Label

● Rules to Code By
– Commit often, don’t break the build

