
21-11-4 1

Implementation Issues

CMPT 276 Slides # 10 © Dr. B. Fraser

21-11-4 2

Topics

1) Programming is complex; how can we combat this?

2) Can we find bugs by reading each other’s code?

3) Do different coding style help?

4) Can software reuse solve our problems?

21-11-4 3

Limiting Software Complexity

21-11-4 4

Limiting Software Complexity

● Writing software involves..

(McConnel: Code Complete 2, 2004)

– Developer must reason about..

● Beyond human competency
– Humans cannot cope with these 10 orders of

magnitude all at once.

– An Analogy:
think about a scientist trying to work
with subatomic particles and galaxies
in one calculation.

Analogy: not same orders of magnitude, but you get the idea.

21-11-4 5

Limiting Software Complexity

● (McConnel 2004)

Software’s Primary Technical Imperative:
..

– We must simplify the problems in order to be able to
think about them.

● Use encapsulation to reduce cognitive load
– A good design allows you to..

– A bad design requires you to work at
low and high levels simultaneously,
across multiple modules.

21-11-4 6

Complexity Example

● Compare the levels of abstraction in the following
two competing interface designs to control SkyTrain:

int isSpeedReadingValid();
long getSpeedSensorReading();
void setBrakeBits(long brakeBitMask);
void setMotorRPM(long rpm);

double getSpeedInMps();
void emergencyStop();

// May speed up or slow down
void accelerateToNewSpeedInMps(double speedInMps);

A

B

21-11-4 7

Code Reviews

21-11-4 8

Code Reviews

● A code review is having..

– Could be a walk-through of the code by the author
to show colleagues how code works

– Usually it’s code reviewing a merge request (MR) or
pull request (PR)

● Possible MR Code Review Process
– Each MR reviewed by 1 (or more) developers

– Add comments to the MR in GitLab

– When ready, +1 it

– Repo Manager accepts MR’s with +1

21-11-4 9

Code Review Tips

● ..
– 200-400 lines of code (LoC)

– < 60 minutes

● Use a checklist (next slide)

● Code review is positive!
– ..

(I had one MR with ~5 rounds of changes)

– Knowing it will be code reviewed gives..

– # defects found does not reflect badly on coder

● Fix bugs before MR accepted (in most cases)

21-11-4 10

Code Review Checklist

● During a code review look for
– logic errors (logic backwards, missing else, ...)

– poor error handling

– poor security (buffer overrun)

– poor readability/comments

– common errors (== vs =, null ptr, memory leak)

– requirements misunderstanding

● Can do a “code review” on design, test plans, test
code, deployment scripts, etc.

– Not just for shippable code.

21-11-4 11

Benefits of Code Reviews

● Code Review Effectiveness (Jones 1996, in McConnel 2004)

– Informal code reviews catch.. of defects

– Formal code reviews catch.. of defects

– Unit testing catches.. of defects

● Code reviews benefits
– Have a different person reading the code

● Different way of thinking; validate requirements

– Share knowledge between developers

● Ex: suggest calling an existing function

– Can suggest how to..
whereas unit tests just test behaviour

21-11-4 12

Style Guide

21-11-4 13

Coding Style

● Coding is hard!
– Developers must actively think about:

● (design patterns, classes)

● (algorithms)

● (data types)

● (spaces, naming, brackets)

● Syntactic concerns are often "religious" issues
– Devs feel passionate about tab size (2, 3, 4, 8)

– Not usually possible to “convert” someone
to a new style without a lot of effort.

21-11-4 14

Code Style Example

● Linux kernel style guide:
– Tabs are 8 characters, and thus indentations are

also 8 characters. There are heretic movements that
try to make indentations 4 (or even 2!) characters
deep, and that is akin to trying to define the value of
PI to be 3.
(some text omitted...)

– Now, some people will claim that having 8-character
indentations makes the code move too far to the
right, and makes it hard to read on a 80-character
terminal screen. The answer to that is that if you
need more than 3 levels of indentation, you’re
screwed anyway, and should fix your program.
(some text omitted...)

21-11-4 15

Style Guide

● A style guide..
– Consistent code style across project makes it faster

to read and modify code.

– Instead of syntactic disagreements, devs can think
of..

● Can address some common issues in a language:
– int x = 0;

print(x?x++:++x);

– int y = 100;
if (y < 5 && y > 0 && y % 2 == 1) y--;
 y = 10;
print(y);

● Example style guide (CMPT 213 w/ Java)

21-11-4 16

Code Reuse

21-11-4 17

Reuse cost

● Reusing well tested component can..

● But, it’s not free
– Must find and evaluate existing components.

– Must spend time to integrate into new system.

● Reuse can cause errors
– Some disasters caused by reusing software which

had an unknown bug.

– We tend not to test them well enough because..

21-11-4 18

Caution on reuse
● Ariane 5 rocket: Initial test flight...

– Reused a module from Ariane 4 which converted
horizontal velocity (floating point) to a 16bit integer.

– Ariane 4 rocket never encountered an error.

– Exception handling was turned off for efficiency.

– Both primary and backup computers encountered the
error at the same time and shutdown.

– Code was only needed while on launch pad :(

https://www.youtube.com/watch?v=5tJPXYA0Nec

21-11-4 19

Caution on reuse
● Therac-25 (1982):

Canadian made radiation
therapy machine. ...

● Reused buggy software
that relied on hardware
safeties, which were left
out in the later version.

● Actually numerous
independent bugs;
each was fatal

● ..

unsigned char count = 1;
while (count != 0) {

if (check_hardware_ready()) {
count = 0;

} else {
count++;
display_progress(count);

}
}
turn_on_radiation();

Idea behind one bug

21-11-4 20

Summary

● Primary technical imperative: manage complexity

● Code reviews effective complement unit testing for
finding defects; improves code quality

● Use a style guide to free developer from syntactic
decisions

– Can instead focus on higher-level issues

● Consider possible reuse of existing software
– Beware of over confidence.

