Implementation Issues

CMPT 276 Slides # 10 © Dr. B. Fraser

1) Programming is complex; how can we combat this?
2) Can we find bugs by reading each other’s code?

3) Do different coding style help?
4) Can software reuse solve our problems?

Limiting Software Complexity

* Writing software involves..

(McConnel: Code Complete 2, 2004)
- Developer must reason about..

 Beyond human competency
- Humans cannot cope with these 10 orders of

magnitude all at once.

- An Analogy:
think about a scientist trying to work

with subatomic particles and galaxies
In one calculation.

Analogy: not same orders of magnitude, but you get the idea.

 (McConnel 2004)
Software’s Primary Technical Imperative:

- We must simplify the problems in order to be able to

think about them.

* Use encapsulation to reduce cognitive load
- A good design allows you to..

— A bad design requires you to work at
low and high levels simultaneously,
across multiple modules.

Complexity Example

* Compare the levels of abstraction in the following
two competing interface designs to control SkyTrain:

int isSpeedReadingValid();

long getSpeedSensorReading();

void setBrakeBits(long brakeBitMask);
void setMotorRPM(long rpm);

double getSpeedIinMps();
void emergencyStop();

// May speed up or slow down
void accelerateToNewSpeedInMps(double speedinMps);

21-11-4

Code Quality Measurement:
WTFs/Minute

| w3 Code Reviews

Good Code Bad Code

http://commadot.com

21-11-4

* A code review is having..

— Could be a walk-through of the code by the author
to show colleagues how code works

- Usually it’s code reviewing a merge request (MR) or
pull request (PR)

* Possible MR Code Review Process
- Each MR reviewed by 1 (or more) developers

- Add comments to the MR In GitLab
- When ready, +1 it
- Repo Manager accepts MR’s with +1

— 200-400 lines of code (LoC)
- < 60 minutes

* Use a checklist (next slide)
* Code review Is positive!

(I had one MR with ~5 rounds of changes)
- Knowing it will be code reviewed gives..
- # defects found does not reflect badly on coder

* Fix bugs before MR accepted (in most cases)

* During a code review look for
- logic errors (logic backwards, missing else, ...)

— poor error handling

— poor security (buffer overrun)

— poor readability/comments

— common errors (== vs =, null ptr, memory leak)
— reguirements misunderstanding

* Can do a “code review” on design, test plans, test

code, deployment scripts, etc.
— Not just for shippable code.

Benefits of Code Reviews

e (Jones 1996, in McConnel 2004)

- Informal code reviews catch.. of defects
- Formal code reviews catch.. of defects
— Unit testing catches.. of defects

- Have a different person reading the code

e Different way of thinking; validate requirements
- Share knowledge between developers

* EX: suggest calling an existing function

— Can suggest how to..
whereas unit tests just test behaviour

21-11-4 11

Style Guide

* Coding Is hard!
— Developers must actively think about:

. (design patterns, classes)
. (algorithms)

. (data types)

. (spaces, naming, brackets)

* Syntactic concerns are often "religious" issues
- Devs feel passionate about tab size (2, 3, 4, 8)

— Not usually possible to “convert” someone
to a new style without a lot of effort.

Code Style Example

21-11-4

— Tabs are 8 characters, and thus indentations are

also 8 characters. There are heretic movements that
try to make indentations 4 (or even 2!) characters
deep, and that is akin to trying to define the value of
Pl to be 3.

(some text omitted...)

Now, some people will claim that having 8-character
Indentations makes the code move too far to the
right, and makes it hard to read on a 80-character
terminal screen. The answer to that is that if you
need more than 3 levels of indentation, you're
screwed anyway, and should fix your program.

(some text omitted...)

14

* A style guide..
— Consistent code style across project makes it faster
to read and modify code.

- Instead of syntactic disagreements, devs can think
of..

* Can address some common issues in a language:
- Intx =0;
print(x?x++:++x);
- Iinty = 100;
f(y<5&&y>0&8&Yy%2==1)y-;
y = 10;
print(y);

Code Reuse

* Reusing well tested component can..

* But, it's not free
- Must find and evaluate existing components.

- Must spend time to integrate into new system.

* Reuse can cause errors
- Some disasters caused by reusing software which
had an unknown bug.

- We tend not to test them well enough because..

C aUtl oNn on reuse https://www.youtube.com/watch?v=5tJPX YAONec

e Ariane 5 rocket: Initial test flight...
- Reused a module from Ariane 4 which converted
horizontal velocity (floating point) to a 16bit integer.

— Ariane 4 rocket never encountered an error.
- Exception handling was turned off for efficiency.

- Both primary and backup computers encountered the
error at the same time and shutdown.

Code was only needed while on launch pad :(

21-11-4

18

* Therac-25 (1982): Idea behind one bug

: . unsigned char count = 1;
Canadian made radiation while (count = 0) {

therapy machine. ... if (check_hardware_ready()) {
count = 0;
} else {
o count++;
Reuseq buggy software display_progress(count);
that relied on hardware }
safeties, which were left)

turn_on_radiation();

out in the later version.

* Actually numerous
Independent bugs;
each was fatal

- e
.........

* Primary technical imperative: manage complexity

* Code reviews effective complement unit testing for
finding defects; improves code quality

* Use a style guide to free developer from syntactic

decisions
- Can instead focus on higher-level issues

* Consider possible reuse of existing software
- Beware of over confidence.

