
24-04-02 1

Threads

Ch 9

© Dr. B. FraserSlides 19CMPT 213

24-04-02 2

Motivation

● Create GUI for program which finds primes
– Using very slow algorithm:

~20 seconds to find a prime.

– Want UI to be responsive while computing primes.

● Demo: ThreadDemoUI.java (ca.threads.primeui)

1) Single threaded:..
2) Background thread:..
3) Many threads:..

24-04-02 3

Topics

1) How can our program do 2 things at once?

2) Does doing 2 things at once cause problems?

24-04-02 4

Thread Basics:
Runnable & Thread

24-04-02 5

1) Create a Task:..
Must implement
Runnable:

2) Create a..

class MyAmazingTask implements Runnable {
@Override
public void run() {

// Calculate something amazing here!
}

}

public interface Runnable {
void run();

}

Running Task

public void main(String[] args) {
Runnable myTask = new MyAmazingTask();
Thread myThread = new Thread(myTask);
myThread.start();

! PrimeTest.java

24-04-02 6

UML for Prime Demo

Code: PrimeTest.java

24-04-02 7

Timing

● Time Slice:
a block of time during which..

– OS/JVM allocates time-slices to threads.

● Not always equal:
– Starvation: a task given..

– Fairness: Often use round-robin scheduling.

– Priority: Some threads higher priority than others.

● UI Demo:
– 10 threads computing if same number is prime.

Will not all..

24-04-02 8

Suspending a Thread

● Can briefly suspend a thread with..

– delay is in milliseconds (1/1000 second)

– can throw InterruptedException

private static final long DELAY_MS = 1000;

@Override
public void run() {

try {
while (true) {

System.out.println(“Hello!”);
Thread.sleep(DELAY_MS);

}
} catch (InterruptedException e) {

// Handle end of task here.
}

}

24-04-02 9Image: http://www.shutterstock.com/portfolio/search.mhtml?gallery_landing=1&page=1&gallery_id=138331

Thread
Synchronization

24-04-02 10

Thread Interactions

● Race condition
– Effect of multiple threads on shared data depends

on..

– Demo: MathDemo

● Cause
– The execution of one thread is interrupted by

another thread.

– Second thread disturbs or corrupts operation of
initial thread.

● Critical Section
– A portion of a thread's execution where..

24-04-02 11

MathDemo Analysis

volatile private int number;

public int compute(int newValue) {
number = newValue;

int result = 0;
for (int i = 0; i < NUM_STEPS; i++) {

result += number;
}
for (int i = 0; i < NUM_STEPS; i++) {

result -= number;
}
return result;

}

Thread 1: Thread 2:

One possible scenario:

24-04-02 12

Heisenbug

● Race Condition Solution
– Thread Safe: No race conditions.

– How? Use locks.

● Aside: Non-reproducable bugs
– Dependent on subtle timing events

– Heisenbug: A bug who's behaviour
is..

– Debugging can change thread
timing, changing the behaviour.

– VERY tricky bugs to find!

24-04-02 13

Locks
● Process:

1. Create a lock for access to some resource
(such as a variable, file, printer, ...)

2. Lock the lock before accessing resource.

3. Use resource

4...
class LockExample {

private ReentrantLock myLock = new ReentrantLock()
public void foo() {

myLock.lock();
try {

// Protected critical section
// ... do stuff here

} finally {
myLock.unlock();

}
}

}

No other thread can execute
this code while this thread

has it locked.

..

24-04-02 14

Locking Example

● Dealing with a shared queue.
–

threads adding data to a bounded queue

● Ex: calculating prime numbers.

–

thread removing data from a bounded queue

● Ex: printing out the prime numbers.

● Thread Synchronization Problem
– Two producers may interfere with each other.

– Consumer and producer may interfere.

● Thread safe:..

24-04-02 15

Producer / Consumer UML

24-04-02 16

Producer / Consumer

public class Producer implements Runnable {
// Passed the queue from main()
private BoundedQueue<String> queue;

public void run() {
while (..) {

if (!queue.isFull()) {
queue.add("Hello");

}
Thread.sleep(...);

}
}

}

public class Consumer implements Runnable {
// Passed the queue from main()
private BoundedQueue<String> queue;

public void run() {
while (...) {

if (!queue.isEmpty()) {
String msg = queue.remove();
System.out.println(msg);

}
Thread.sleep(...);

}
}

}

Note: Exception handling removed.

Demo: ...boundedqueue.ThreadTester.java

24-04-02 17

Deadlock

● Deadlock:
if no thread can proceed because..

● Ex: Dining Philosophers
– Philosophers are either:

● Thinking or

● Eating

– To eat, a philosopher needs..

– How can deadlock happen?

– How to resolve?

24-04-02 18

Stopping a Thread

● Thread normally ends when..

● Can end a running thread (vs letting it finish):
– Notify thread of interruption with:

– Interrupted thread knows it's interrupted by:

● If in a Thread.sleep(), it throws exception.

● Manually check the interrupted flag:
if (Thread.currentThread().isInterrupted()) {...}

Runnable myTask = new MyAmazingTask();
Thread myThread = new Thread(myTask);
myThread.start();

// ... Later, when thread not needed:
myThread.interrupt();

24-04-02 19

Summary

● Process
– Create a task: Implement Runnable

– Create a thread: pass it a runnable, call start()

– Interrupt with myThread.interrupt()

● Race Condition: Threads may interfere
– Solution: locks

● Common Examples
– Produce/Consumer

– Dining Philosophers

● Deadlocks: Threads waiting on each-other.

