
24-03-24 1

Patterns

© Dr. B. FraserSlides 15CMPT 213

24-03-24 2

Topics

1) How to best loop through some items?

2) How to best notify an object of a change?

3) How to best organize classes in an application?

4) How can design ideas be reused?

24-03-24 3

Iterator

24-03-24 4

Accessing Items in a Collection

List<String> data = // <snip>

Iterator<String> itr = data.iterator();
while (itr.hasNext()) {
 String word = itr.next();
 // <snip>

}

List<String> data = // <snip>

Node n = data.head();
while (n != null) {
 String word = n.getData();
 // <snip>
 n = n.nextNode();
}

● What changes when switch to an ArrayList?
– Using an iterator:..

– Direct access:..

● What changes when switch to an binary tree?
– Using an iterator:..

– Direct access:..

Direct Link List CodeJava Iterator

24-03-24 5

Iterator Idea

● Iterator Idea:
– An object which allows iteration over items..

– If details are hidden..

– Can have multiple
iterators for a
collection without
them interfering.

int count = 0;
Iterator<String> itr1 = cars.iterator();
while (itr1.hasNext()) {
 String car1 = itr1.next();
 Iterator<String> itr2 = cars.iterator();
 while (itr2.hasNext()) {
 String car2 = itr2.next();
 if (car1.equals(car2)) {
 count++;
 }
 }
}

24-03-24 6

Pattern

● Software Design Pattern:
–

– Allows discussion, implementation,
and reuse of proven software designs.

● Gang of Four
– A pioneering book on design

patterns by 4 authors:
Gamma, Helm, Johnson, Vlissides.

24-03-24 7

The Iterator Pattern

● Context
– An aggregate object contains element objects

– Clients need access to the element objects

– The aggregate object should not expose its internal
structure

– Multiple clients may want independent access

● Solution
– Iterator fetches one element at a time

– Each iterator object..

– Iterators use a common interface.

24-03-24 8

Iterator UML

● Client only depends on..

– It gets a concrete
iterator, but knows only
its generic type.

● Mapping pattern to
CarManager example:

Design Pattern CarManager Ex.

Concrete Iterator Anon. Iterator

Concrete
Aggregate

CarManager

Aggregate <<I>> nothing in this
example.

isDone()... !hasNext()...

Iterator Pattern

CarManager Classes

24-03-24 9

Observer

24-03-24 10

Observer pattern motivation

● Imagine you are writing an automatic day-planner:
– It reads in the user's interests, plus information about the

world, and suggest what they should do.

● Possible design idea:
– You want to use different objects for cultural planning,

sports planning, and sight-seeing.

– Some objects bring in information about the world;
your planning-objects use these info objects.

● Challenge:
– All of these objects need to know the weather.

– Your weather object gets updates now and then.

– How do you tell..

For
billionaires!

24-03-24 11

class Weather

Possible Idea

● Have the weather object call each info. object:

● Bad because:
– Weather object is...

– Every new planner you get, you'll have to change the
weather object's code, recompile, and re-run.

void newDataUpdate() {
String weatherData = ...;
culturePlanner.update(weatherData);
sportsPlanner.update(weatherData);
sightseeingPlanner.update(weatherData);
// Change here EVERY time you get a new planner.

}

24-03-24 12

The observer pattern

● Observer Pattern:

● Produces a one to many relationship:
– one object observed (called the subject)

– many objects observing (called the observers).

● Great because it loosely couples objects:
– Object with something to report does not need a

hard-coded list of who to tell; ...

24-03-24 13

Weather Observer
● Weather has forecast and updates it periodically;

Client needs to know when new forecast is ready

● Client creates anonymous IWeatherChange obj
– Client registers it with Weather as a listener for

..

● Benefit is.

Model

24-03-24 14

Observer Pattern

● Context
– An object, called the subject, is source of events

– One or more observer objects want to be notified
when such an event occurs.

● Solution
– Define an observer interface type.

All..

– Subject maintains a collection of observers.

– Subject supplies methods for attaching and
detaching observers.

– Whenever an event occurs, the subject..

!! simple NumberList example !!

24-03-24 15

Observer UML

Design Pattern Weather Ex.

Subject Weather

attach() addObserver()

Observer <<I>> IWeatherWatcher<<I>>

notify() weatherChanged()

Concrete
Observer

Anon. Weather Change Obs

Observer Pattern

● Subject object knows
nothing about class
observing it.

– ..

*

*

24-03-24 16

Model View Controller Pattern
and

Facade Pattern

Briefly!

24-03-24 17

Terminology

● Model:

– Not like a "model airplane":
it's the brains of your system.

● View:

– Numerous views (parts of UI)
may register as observers
to a model.

24-03-24 18

MVC

● Clean design
Split business logic into..

● Model View Controller Pattern
MVC splits off 3 things:

– Model: ..

● Ex: HistogramData

– View: ..

● Ex: HistogramIcon, UI components

– Controller: ..

● Ex: ActionListeners for buttons.

24-03-24 19

Facade Pattern
● Separate your model from your UI!

– What if the model is complicated?
UI gets.. to many classes in the model.

● Facade Pattern
– Introduce a new class to the model to..

Facade

24-03-24 20

...

...

Facade Pattern Example: Music Player

ModelFacade

ModelFacade

24-03-24 21

Recognizing Patterns

Briefly!

24-03-24 22

Applying Patterns

● Recognize a pattern by..
– Iterator: cycle through a collection

– Observer: register for events

– Strategy: wrap part of an algorithm into a class

● Helps to remember examples
– Pattern name a hint, but it's not always applicable.

● Ex: What strategy applies to..

– Strategy?

– Observer?

– Iterator?

24-03-24 23

Summary

● Design patterns allow reuse of design ideas.

● Iterator: An object which abstracts iteration through
items in a collection.

– Decoupled: change collection without changing client
code.

● Observer: Notify observing objects of a change without
being coupled to those objects.

● MVC: Separate the model from the view.
– Consider Facade Pattern to decouple UI from model

complexity.

● Apply patterns based on patterns intention
(not name or UML diagram).

