
24-03-19 1

If all you have is a hammer,
everything looks like a nail.

-- Abraham Masslow, 1966

© Dr. B. FraserSlides 14CMPT 213

Designing for
Inheritance

Ch6

24-03-19 2

Topics

1) What makes inheritance useful?

2) What makes inheritance problematic?

24-03-19 3

Ex: Java Stack Inherits from Vector

● Java 1.0 had Stack is-a Vector

● What’s good about its inheritance?

● What’s bad about its inheritance?

24-03-19 4

Encapsulation Goal

● Encapsulation goal with Inheritance:

– use super in constructors and for overridden methods.

– use visibility modifiers to provide sufficient access but
maintain encapsulation.

– avoid protected: fields should be private except for a
“protected interface” to derived classes

● But, inheritance is not great for encapsulation
(more later).

24-03-19 5

When to use Inheritance?

● What is sufficient grounds to use inheritance?
– Code reuse?

– Is-a relationship?

– Polymorphism?

24-03-19 6

Reason 1: Code Reuse

● Idea: Inherit shared functionality from a base class.

– Human & Dog have duplicate code (fields & methods),
but..

● Limitation

– (Could create a “NamedMammal” base-class)

24-03-19 7

Reason 2: Is-A

● Idea: Inheritance represents a..

● Example:
– Square is-a Rectangle, and gives reuse.
– But..

– How can we describe this problem?

What is an example
method in Rectangle

inconsistent with
Square?

..

24-03-19 8

Is-A: LSP

● Liskov Substitution Principle (LSP)
B can inherit from A only if..

1)..
that A's method accepts (or more) and

2)..
that A's method does (or more).

● What methods in Rectangle fail LSP for Square?
–

– Square does not do the same things
with all values as Rectangle: fails LSP.

24-03-19 9

Is-A: LSP & Immutable

● LSP & Immutable
– Would making Rectangle and Square immutable

help?

–

● Is-A Limitation: Must..

24-03-19 10

Is-A LSP: Example

● Photographer can photograph any Animal.
DuckPhotographer only wants to photograph Ducks.

● DuckPhotographer::photograph()
wants to reject non-ducks

– Could throw an
IllegalArgumentException?

● DuckPhotographer
..

– ..

24-03-19 11

Is-A LSP
● Rephrase LSP:

– Client code using a reference to the base class must be able to..

– i.e., behaviour
is unchanged.

24-03-19 12

Is-A LSP: SOLID

LSP is part of a common set of 5 OOD principles:

● S Single Responsibility Principle
“Class has one responsibility”

● O Open Closed Principle
“Be open for extension, closed for modification”

● L Liskov Substitution Principle
“Subtype objects interchangeable with base objects”

● I Interface Segregation Principle
“Favour many client specific interfaces”

● D Dependency Inversion Principle
“Depend on abstractions, not concrete classes”

24-03-19 13

Reason 3: Polymorphism

● Idea: Work with derived classes through..

● Client code can flexibly work with new derived types without
needing to change

– Open-Closed Design Principle:
Code is open for reuse, but closed for modification.

● Example: New TextBox inherit Rectangle

– Share code:

– Is-a:

– Polymorphism:

● But, is that enough?

24-03-19 14

Limits of Inheritance

Pixabay [Pexel]

24-03-19 15

Inflexible type

● Example

● Limitation
..

– Don't use inheritance for anything that may change type

– Use composition (references) vs inheritance

– What about when a student..

– Cannot..

24-03-19 16

Encapsulation

● Consider using inheritance to
modify the behaviour of a class
to make a threadsafe variety

– Derived class can override each
method of base class

– Add a lock() and unlock() to each
method

● What’s good?
– Code reuse

– Polymorphism

● What’s bad?
class ThreadsafeIntList extends IntList {
 private Mutex mutex = new Mutex();

 @Override
 void add(int value) {
 mutex.lock();
 super.add(value);
 mutex.unlock();
 } ...

24-03-19 17

IntList Problems
class IntList {
 private int[] data = new int[0];

 void add(int value) {
 int newSize = data.length + 1;
 int[] big = new int[newSize];
 IntStream.range(0, data.length)
 .forEach(i -> big[i] = data[i]);
 big[newSize - 1] = value;
 data = big;
 }

 void addAll(int[] values) {
 for (int value : values) {
 add(value);
 }
 }

 int get(int index) {
 return data[index];
 }
}

class ThreadsafeIntList extends IntList {
 private Mutex mutex = new Mutex();

 @Override
 void add(int value) {
 mutex.lock();
 super.add(value);
 mutex.unlock();
 }

 @Override
 void addAll(int[] values) {
 mutex.lock();
 super.addAll(values);
 mutex.unlock();
 }

 @Override
 int get(int i) {
 mutex.lock();
 int value = super.get(i);
 mutex.unlock();
 return value;
 }
}

Self Use:
- addAll() calls add()

Should addAll() call
lock() / unlock()?

24-03-19 18

Self Use
class IntList {
 void add(int value) {
 ...
 }

 void addAll(int[] values) {
 for (int value : values) {
 add(value);
 }
 }
}

class ThreadsafeIntList extends IntList {
 @Override
 void add(int value) {
 mutex.lock();
 super.add(value);
 mutex.unlock();
 }

 @Override
 void addAll(int[] values) {
 mutex.lock();
 super.addAll(values);
 mutex.unlock();
 }
}

● Self Use
..

● Problem
– Derived class needs to know

when its functions will be called
so it does not try to double lock.

– Derive class depends on the
internal implementation details
of the base.

– This..

● Solution
– Base class must either

..

24-03-19 19

Self use solution

● Self use is a problem when
base class calls its own
methods which can be
overridden

● Solutions
– Move shared functionality to

..

or

– Document any self-use
(and commit to it) so derived
class can account for it

class IntList {
 private void addInternal(int value) {
 ... (same as add())
 }

 void add(int value) {
 addInternal(value);
 }

 void addAll(int[] values) {
 for (int value : values) {
 addInternal(value);
 }
 }
}

class ThreadsafeIntList extends IntList {
 @Override
 void add(int value) {
 mutex.lock();
 super.add(value);
 mutex.unlock();
 }

 @Override
 void addAll(int[] values) {
 mutex.lock();
 super.addAll(values);
 mutex.unlock();
 }
}

24-03-19 20

Limits of Inheritance

● ..
– Cannot change object type after instantiation

● ..
– Self-use must be avoided or documented

● ..
– Local change to base class has non-local effects

– Adding method to base class adds behaviour to derived class:

● may break guarantees of derived class.

● may unexpectedly override a derived class’s extra
function, changing its behaviour.

● may not compile if added function would override a
derived class’s extra function but different return type.

24-03-19 21

Better Inheritance

24-03-19 22

Polymorphism using Interfaces

● Implementation Inheritance
– ..

– Problematic!

● Interface Inheritance
– Implementing an interface to support polymorphism

– Very useful!

● Basic Plan
– When needing polymorphism, use composition:

..

– Have small classes which implement the interfaces.

– Flexibly compose objects at runtime

– Flexibly add new small objects

24-03-19 23

Replace Inheritance with Wrapper

● Instead of inheriting from concrete class IntList,
have “derived” class holds a reference to it.

– ArrayIntList implements the IntList interface

– ..
Hold a reference to a concrete IntList

– ..
Each derived method
calls the wrapped object

– Forwarding is also called
..

class ThreadsafeIntList implements IntList {
 private Mutex mutex = new Mutex();
 private IntList list = new ArrayIntList();

 @Override
 void add(int value) {
 mutex.lock();
 list.add(value);
 mutex.unlock();
 } ...

24-03-19 24

IntList with Wrapper Class

final class ThreadsafeIntList implements IntList {
 private Mutex mutex = new Mutex();
 private IntList list = new ArrayIntList();

 @Override
 public void add(int value) {
 mutex.lock();
 list.add(value);
 mutex.unlock();
 }

 @Override
 public void addAll(int[] values) {
 mutex.lock();
 list.addAll(values);
 mutex.unlock();
 }

 @Override
 public int get(int i) {
 mutex.lock();
 int value = list.get(i);
 mutex.unlock();
 return value;
 }
}

interface IntList {
 void add(int value);
 void addAll(int[] values);
 int get(int index);
}

final class ArrayIntList implements IntList {
 private int[] data = new int[0];

 @Override
 public void add(int value) {
 ...
 }

 @Override
 public void addAll(int[] values) {
 for (int value : values) {
 add(value);
 }
 }

 @Override
 public int get(int index) {
 return data[index];
 }
}

Could use
DI

ThreadsafeIntList:
- Is-a IntList and
- Has-a IntList
It is the..

24-03-19 25

Replacing Implementation Inheritance

● Inheritance hierarchies of concrete classes are bad
– Rigid types for all objects

– Reuse of implementation (code) means many
dependencies on super classes.

● Ex: Add a “senior” role to Manager and Clerical Staff:
– Senior feature:

Get more money
Can sign for credit card

– Not clear how to fit
into inheritance
hierarchy

Encore
Slide

24-03-19 26

Use Composition Instead Encore
Slide

Composition is more flexible.
Can change object an runtime.

Can have multiple duties.

24-03-19 27

Design Principles

● Design Principle:
Program to an interface, not an implementation

– Flexibility to reference a different concrete class later

● Design Principle:
Prefer composition over inheritance

– Composition allows..
(reference a new object)

– Reduces rigid coupling from static inheritance hierarchy

Encore
Slide

24-03-19 28

Summary

● Use inheritance only when supported by:
– is-a relationship & LSP

– polymorphism

● Limits on Inheritance
– Good to “Inherit” (implement) interfaces!

– OK to inherit from classes you control (same package)

– OK to inherit from classes designed for inheritance
(Ex: “Template Pattern”)

– Only when you are OK living with base class’s API

● Consider using composition instead (as well).

