REST API
Introduction

24-03-10 CMPT 213 Slides 12 © Dr. B. Fraser !

Topics

1) How to request and send data to a server?
2) How to design a server’'s API?

24-03-10 2

HTTP

24-03-10 3

Overview

 Front-end = client-side: browser
e Back-end = server side

— server to allow interaction between users
— server to store resources or do heavy processing
- centrally managed deployment and admin

24-03-10 4

Server Interaction

— browser does HTTP GET on URL
- server sends back a web page (HTML, CSS, JS)

- client-side makes reguests to server's
RESTful API's endpoints (URLS)

— data transmitted in JSON (or XML)

24-03-10 5

HTTP

e HTTP:..
e URL.:..

<protocol>://<domain name>/<path>
<protocol>://<domain name>:<port>/<path>

- HTTP: 80 (or 8080 alt)

- HTTPS: 443 (or 8443 alt)
S = Secure

24-03-10 6

HTTP Methods

What does the client want to happen at a URL?

e These are the..
— . retrieve some Iinformation from the URL.:
does not change server state

- . Submit a new entity (object) to the URL
- . Delete some entity (object) at the URL

— . Replace an entity at the URL with new value
- ... omitting HEAD, CONNECT, OPTIONS, TRACE, PATCH

24-03-10 7

HTTP Response Status Codes

* Each request message (a GET, POST, ...) returns a

response code:
- 200:...

- 201:..

- 400: Bad Request (client-side error)

- 401: Unauthorized (who are you?)

- 403: Forbidden (1 know who you are, but still not allowed)
- 404...

- 500: Server-side error

- (... many omitted!)

24-03-10 8

Sending Data to the Server

 Front end can send data to the server via:
- . Put data in path variables

* EX: GET http://my.com/api/ /

- . for GET only;
no raw special characters (Ex: %20 = space)

* EX: https://www.google.com/search?
- . All HTTP messages have header
* EX: authentication or apiKey

- . Block of data (often text such as JSON)
* EX:

24-03-10 9

URL Path Variables Detalls

- URL encodes groups or categories as though they
are “folders”, and items as “files”

https://coursys.sfu.ca/2050sp-cmpt-276-d1/students/hiwld

- It seems like we are browsing into folders for a
specific file

24-03-10 10

Query String Detalls

. . the common way to send data for GET
- Use to encode..

* EX: search queries

http://my.com/s?key=value&otherkey=othervalue

curl -k -1 -X GET https://www.adafruit.com/?g=wire

24-03-10 11

Request to Server & Reply

‘1/"“\/ Strivy
Brow ser A Server

1 3
GIT hte:, qrs.rdhl?qpeleirﬂ
(W
UL

ackiyn Prodoc|

24-03-10

Postman Request & Response

https://fwww.adafruit.com/?g=wire

GET ~ https:fiwww.adafruit.com/?g=wire

Params & Authorization Headers (7) Body Pre-request Script e5ls Settings Cookies

Query Params

KEY DESCRIPTION Bulk Edit

Cookles {2) Headers (20) Test Results €% 2000K 525ms 5148KB Save Response v

KEY VALUE

Date @ Mon, 08 Mar 2023 08:11:15 GMT

Content-Type (@

Bady Cookies (2) Headers (20) Test Results £ 200 0K 525ms S148KB
Transfer-Encoding @ —
Prett Raw Preview Visualize HTML =
Connection Y =5
sat-cookie @ 1 |G!DOCTYPE himlp
z chtml lang="en-Us">
set-cookie @ 3

<head>

set-cookie &)

5 <meta name="globalsign-domain-verification” content="395EvTKgTnwb28iKcV68nItcl71lbY JFgawchs
expires @ B gmeta name="viewport" content="width=dewvice-width, initial-scale=1.0">

7 ¢meta charset="utf-8">
cache-control @ g emeta name="author"” comtent="Adafruit Industries" />

a <meta name="generatoxr" content="Adafuit Shopping Cart based on Zencart" />

HTTP Body detalils

GET /~Dbfraser/
Host: www.sfu.ca

Connection: keep-alive
Cache-Control: no-cache
User-Agent: Mozilla/5.0 ...
Accept: text/html,application/...

HTTP/1.1
* HTTP messages can

Include a body
- Used by POST and
PUT to send data

- Often a JSON
structure or binary data

HTTP Request

HTTP/1.1 200 OK

Date: Mon, 02 Mar 2020 05:10:18 GMT
Server: Apache

box: b3 D=1361386 t=1583125818662494
Access-Control-Allow-Origin: *
Content-Length: 3795

Content-Type: text/html;charset=1SO-8859-1

method | sp URL sp | Version

header field nome || value cr | If

HTTP Response

header field name |-

cr |

<IDOCTYPE
<html|>
<head>
<title>Index of /~bfraser</title>...

24-03-10 Image: http://netlab.ulusofona.pt/rc/book/2-application/2_02/index.htm 14

REST API

24-03-10 15

APl & REST

 API:...
- How a program exposes its functionality for other
programs to use.

* REST.:..

- It works with HTTP caching and semantics to
Improve performance

- REST Is founded on some principles, not a strict
prescription.
So what is "RESTful" is up to interpretation

 TLA: Three Letter Acronym

24-03-10 16

Example Tic Tac Toe Model

d7FS1)
USerl © Bran
LServ: AT3
Maoves

rbl
1d- 2
vser: Brigw
row: |
(el

(1d. 6 J
ser: AT3

24-03-10

REST Example

. Tic-tac-toe game
- Base URL: my.com

- /games GET (list), POST (new)
- /games/52 GET (info), POST (change info)
- /games/52/moves GET (list), POST (new)
- /games/52/moves/1 GET (info), POST (change info)

GET my.com/games/52/moves/1
- In games API, retrieve info on game #52’s move #1

24-03-10 18

REST Example (cont)

struct {

curl -X GET localhost/games/52 int 1id;
string userl;
HTTP/1.1 200 OK string userZ;
{ string href;
"id": 52
"user1": "Brian",
"user2": "Al3",

"href": "/games/52"

) Simple data structure to send
data from back-end to front-end

24-03-10 Martin Fowler: https://martinfowler.com/eaaCatalog/dataTransferObject.html 19

REST Example (cont)

[[
curl -X GET localhost/games/52/moves curl -X POST -d {
"user": "Brian",
HTTP/1.1 200 OK "row": 3,
["col: 3
{ g) } localhost/games/52/moves
id": ,
"user": "Brian”,
"row": 1,
"col": 1
I
{
"id": 6,
"user": "Al3",
"row": 3,
"col": 1
}
]

24-03-10 20

RESTful API Design

— Structure URL for the hierarchical nature of the data

- Data you want to expose

- POST (or PUT)
— GET

- POST (or PUT if you are updating the
whole item at once, not just part).

- DELETE

24-03-10 21

RESTful APl Design (cont)

 POST Is a catch all for doing anything.

— Server returns self-descriptive
resources

- Server maintains nothing
about state of the connection; everything comes
from HTTP headers, etc

- Cache as much as possible to
reduce server load

- <...omitted more...>
24-03-10 22

Summary

- Protocol for accessing resources via URL’s

- GET, POST, DELETE, PUT, etc.
* Data in URL, Query String, Header, Body

— Design URLs for Hierarchical data
- REST properties

24-03-10 23

