
24-03-10 1

REST API
Introduction

© Dr. B. FraserSlides 12CMPT 213

24-03-10 2

Topics

1) How to request and send data to a server?

2) How to design a server’s API?

24-03-10 3

HTTP

24-03-10 4

Overview

● Front-end = client-side; browser

● Back-end = server side

● Why make web-based app?
– server to allow interaction between users

– server to store resources or do heavy processing

– centrally managed deployment and admin

24-03-10 5

Server Interaction

● Browser getting data from webserver
– browser does HTTP GET on URL

– server sends back a web page (HTML, CSS, JS)

● Font-end/Back-end Interaction
– client-side makes requests to server's

RESTful API's endpoints (URLS)

– data transmitted in JSON (or XML)

24-03-10 6

HTTP

● HTTP:..

● URL:..
– Ex: http://www.sfu.ca/~bfraser/answers

<protocol>://<domain name>/<path>

<protocol>://<domain name>:<port>/<path>

● Protocol ports
– HTTP: 80 (or 8080 alt)

– HTTPS: 443 (or 8443 alt)
S = Secure

24-03-10 7

HTTP Methods

● HTTP methods:
What does the client want to happen at a URL?

● These are the..
– : retrieve some information from the URL:

does not change server state

– : Submit a new entity (object) to the URL

– : Delete some entity (object) at the URL

– : Replace an entity at the URL with new value
– ... omitting HEAD, CONNECT, OPTIONS, TRACE, PATCH

24-03-10 8

HTTP Response Status Codes

● Each request message (a GET, POST, ...) returns a
response code:

– 200:..

– 201:..

– 400: Bad Request (client-side error)

– 401: Unauthorized (who are you?)

– 403: Forbidden (I know who you are, but still not allowed)

– 404:..

– 500: Server-side error

– (... many omitted!)

24-03-10 9

Sending Data to the Server

● Front end can send data to the server via:
– : Put data in path variables

● Ex: GET http://my.com/api/person/5

– : for GET only;
no raw special characters (Ex: %20 = space)

● Ex: https://www.google.com/search?q=hi+world

– : All HTTP messages have header

● Ex: authentication or apiKey
"ApiKey:abc123"

– : Block of data (often text such as JSON)

● Ex: {"name":"Dr. Evil","age":95,"laugh":"Mwahah"}

24-03-10 10

URL Path Variables Details

● Path Variable Idea
– URL encodes groups or categories as though they

are “folders”, and items as “files”

● Example

– It seems like we are browsing into folders for a
specific file

– ..

https://coursys.sfu.ca/2050sp-cmpt-276-d1/students/hiwld

24-03-10 11

Query String Details

● Query String: the common way to send data for GET
– Use to encode..

● Ex: search queries

● Common Format
http://my.com/s?key=value&otherkey=othervalue

● Demo
curl -k -i -X GET https://www.adafruit.com/?q=wire

24-03-10 12

Request to Server & Reply

24-03-10 13

Postman Request & Response

24-03-10 14

HTTP Body details

● HTTP messages can
include a body

– Used by POST and
PUT to send data

– Often a JSON
structure or binary data

Image: http://netlab.ulusofona.pt/rc/book/2-application/2_02/index.htm

GET /~bfraser/ HTTP/1.1
Host: www.sfu.ca
Connection: keep-alive
Cache-Control: no-cache
User-Agent: Mozilla/5.0 ...
Accept: text/html,application/...H

T
T

P
 R

e
q
u
e
s
t

HTTP/1.1 200 OK
Date: Mon, 02 Mar 2020 05:10:18 GMT
Server: Apache
box: b3 D=1361386 t=1583125818662494
Access-Control-Allow-Origin: *
Content-Length: 3795
Content-Type: text/html;charset=ISO-8859-1

<!DOCTYPE
<html>
 <head>
 <title>Index of /~bfraser</title>...

H
T

T
P

 R
e
s
p
o
n
s
e

24-03-10 15

REST API

24-03-10 16

API & REST

● API:..
– How a program exposes its functionality for other

programs to use.

● REST:..
– ..

– It works with HTTP caching and semantics to
improve performance

– REST is founded on some principles, not a strict
prescription.
So what is "RESTful" is up to interpretation

● TLA: Three Letter Acronym

24-03-10 17

Example Tic Tac Toe Model

24-03-10 18

REST Example

● Example: Tic-tac-toe game
– Base URL: my.com

– /games GET (list), POST (new)

– /games/52 GET (info), POST (change info)

– /games/52/moves GET (list), POST (new)

– /games/52/moves/1 GET (info), POST (change info)

● Full Example
GET my.com/games/52/moves/1

– In games API, retrieve info on game #52’s move #1

24-03-10 19

REST Example (cont)

● Get Game Info

curl -X GET localhost/games/52

HTTP/1.1 200 OK
{

"id": 52
"user1": "Brian",
"user2": "AI3",
"href": "/games/52"

} ..
Simple data structure to send

data from back-end to front-end

struct {

int id;

string user1;

string user2;

string href;

}

● Data Structure

Martin Fowler: https://martinfowler.com/eaaCatalog/dataTransferObject.html

24-03-10 20

REST Example (cont)

● Make a move

curl -X POST -d {
"user": "Brian",
"row": 3,
"col": 3

} localhost/games/52/moves

● Get Moves

curl -X GET localhost/games/52/moves

HTTP/1.1 200 OK
[

{
"id": 2,
"user": "Brian",
"row": 1,
"col": 1

},
{

"id": 6,
"user": "AI3",
"row": 3,
"col": 1

}
]

24-03-10 21

RESTful API Design

● Design API around things and actions
– Structure URL for the hierarchical nature of the data

● Things (nouns)
– Data you want to expose

– ..

● Actions (verbs)
– C POST (or PUT)

– R GET

– U POST (or PUT if you are updating the
whole item at once, not just part).

– D DELETE

24-03-10 22

RESTful API Design (cont)

● GET (and PUT) must be idempotent:
– ..

● POST is a catch all for doing anything.

● Properties of RESTful
– Server returns self-descriptive

resources

– Server maintains nothing
about state of the connection; everything comes
from HTTP headers, etc

– Cache as much as possible to
reduce server load

– <...omitted more...>

24-03-10 23

Summary

● HTTP
– Protocol for accessing resources via URL’s

● HTTP Methods
– GET, POST, DELETE, PUT, etc.

● Data in URL, Query String, Header, Body

● REST
– Design URLs for Hierarchical data

– REST properties

